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PREFACE

Of the four chapters in this book, the first two discuss (albeit in consider-
ably modified form) matters previously discussed in my papers ‘On the
Logic of Conditionals’ [ 1] and ‘Probability and the Logic of Conditionals’
[2], while the last two present essentially new material. Chapter I is
relatively informal and roughly parallels the first of the above papers in
discussing the basic ideas of a probabilistic approach to the logic of the
indicative conditional, according to which these constructions do not
have truth values, but they do have probabilities (equal to conditional
probabilities), and the appropriate criterion of soundness for inferences
involving them is that it should not be possible for all premises of the
inference to be probable while the conclusion is improbable. Applying
this criterion is shown to have radically different consequences from the
orthodox ‘material conditional’ theory, not only in application to the
standard ‘fallacies’ of the material conditional, but to many forms
(e.g., Contraposition) which have hitherto been regarded as above suspi-
cion. Many more applications are considered in Chapter I, as well as
certain related theoretical matters. The chief of these, which is the most
important new topic treated in Chapter I (ie., this topic has not been
treated in my own earlier articles), is a discussion of the fundamentally
important triviality results of David Lewis ([40], as yet, alas, unpublished,
in spite of the fact that these results must be central to any probabilistic
approach to logic). What these results imply is that if the assumptions of
the probabilistic theory are right, then no purely truth-conditional ‘logic’
of the conditional can avoid difficulties of the sort arising in the fallacies
of material implication, and an adequate theory of the conditional must
consider other ‘dimensions of rightness’ besides truth, and other criteria
of soundness besides the classical one that the truth of premises should be
inconsistent with the falsity of conclusions.

Chapter II, which is the only chapter of the book involving original
mathematics, parallels my earlier paper ‘Probability and the Logic of
Conditionals® in proving a number of general theorems concerning the
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properties of the probabilistic soundness criterion — that it should be
impossible for the premises of an inference to be probable while its
conclusion is improbable, the failure to satisfy which is what is wrong in
the fallacies of material implication. The only thing to note about the
present formulation is that the proofs have been radically simplified,
essentially following the lines of related arguments given in my paper
‘The Logic of “Almost Al [4].

Chapter II is an attempt to argue for the rightness of the basic assump-
tions of the probabilistic theory (which entail the triviality results in turn),
and to argue for the mistakenness of the assumptions of orthodox logic as
it applies to conditionals. This argument involves what I regard as the
most important new ideas in the present book, though these are probably
the ones which will be least sympathetically received either by orthodox
logicians or by the new breed of ‘philosophical logicians’. What I try to
show is that probabilistic theory meets but orthodox theory fails to meet
a pragmatic requirement of adequacy for theories of truth and soundness:
namely, that it should be possible to demonstrate that persons are best
advised to try to arrive at conclusions which are ‘true’ according to the
tenets of the theory, and are best off reasoning in accord with principles
which the theory holds to be sound. Without going into detail, an example
from Section IIL5 illustrates the failure of orthodox logic’s assumed
material truth definition (giving the truth conditions for conditionals) to
meet this requirement. Imagine a man about to eat some very good and
non-poisonous mushrooms who is informed “if you eat those mushrooms
you will be poisoned”, which leads the man not to eat the mushrooms,
while making the statement ‘true’ (i.e., materially true) at the same time.
Obviously the man would have been better off not to have arrived at this
allegedly ‘true’ conclusion, and this type of example should make it
questionable that reasoners should want to be guided in their reasoning by
the principles of orthodox logic, if those are designed to lead them to
conclusions which are ‘true’ in this unwanted sense. The positive
argument of Chapter III is to show (at least in limited circumstances) that
the proposed probabilistic theory does satisfy the pragmatic requirement,
the demonstration of which requires us to consider systematically how
people act on conclusions of conditional form which they might arrive at,
and how the wanted or unwanted results of these actions are related to the
‘rightness’ of the conclusions acted on. I should perhaps acknowledge
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immediately that the adequacy argument is anything but definitive, and
perhaps the strongest claim that can be made for the significance of these
arguments is that these are the sorts of considerations which ought to be
taken into account in evaluating any proposed logical theory whose basic
assumptions are questionable.

Chapter IV concerns counterfactuals, and covers much the same ground
as another article ‘Prior Probabilities and Counterfactual Conditionals’
[5] which I had originally expected to appear prior to the book, but
which will now be rendered obsolete by the book because of important
modifications of the theory. The core of both the article and the book is
an epistemic past tense hypothesis concerning the analysis of the counter-
factual, according to which the probability of a counterfactual conditional
at the time of its utterance equals a prior probability of the corresponding
indicative conditional (i.e., its probability upon some prior occasion).
This is argued to explain a variety of logical phenomena involving the
counterfactual (possibly the most interesting of which is its use in ‘explana-
tion’ contexts, where it clearly does not imply the falsity of its antecedent),
and to yield a deeper understanding of inference ‘processes’ like a typical
kind of Modus Tollens, in which ‘inferring a conclusion’ is reconceptual-
ized as a phenomenon of probability change resulting from new premise
acquisition. The chief difference between the present chapter and the
article is that I no longer maintain that the epistemic past tense inter-
pretation can be stretched to cover all uses of the counterfactual, and
there are significant uses, especially related to dispositional concepts,
which do not conform to the analysis. In consequence, I would now argue
only that something like the epistemic past interpretation should play an
important part in an adequate general analysis of the counterfactual, but
lacking such an analysis it may be useful to consider the implications of
the limited hypothesis.

A word should be said about the mathematical background presup-
posed of readers of this book. I should like to think that the proposed
theory would be of interest to logicians generally, and I have accordingly
kept mathematical technicalities to 2 minimum consistent with a reason-
able demand for brevity. As noted, the only original and even slightly
difficult mathematics is confined to Chapter II, and nearly all parts of
the other chapters can be read independently. Elementary probability
formulas are occasionally employed, which should be intelligible to
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persons with only a small acquaintance with the formalism of probability,
and occasionally some slight mathematical argument, which will be
obvious to anyone knowing something of probability theory, is needed to
justify these formulas, but which is omitted in order to avoid obscuring
the fundamental issues at stake. Above all T have tried to avoid the
appearance of mathematical display for its own sake, since I am most
anxious that this work not be dismissed as just another of the puerile
mathematical exercises in logical ‘system building’ which have become
only too common in recent years (realistically, 1 must suppose that the
book will be dismissed in this way by many).

1t is impossible to acknowledge my indebtedness individually to all of
the many students and colleagues whose ideas and criticisms have helped
to shape my own ideas on conditionals, but 1 am particularly grateful to
Professors Brian Skyrms, William Cooper, and David Shwayder. Skyrms
has most influenced my thinking about counterfactuals, has gone much
further than I have in investigating relations between counterfactuals and
laws, and a book which he is now engaged in writing on that subject will
very much deepen the rather sketchy ideas presented here. Cooper’s work
has been most helpful to me in its systematic analysis of all sorts of uses
of indicative conditionals in ordinary speech and writing, and again 2
forthcoming book [12] will go much further than I have in describing the
ordinary language «data’ which any theory of the conditional must account
for. Shwayder is the person who first suggested to me that I try to draw my
jdeas concerning conditionals together and present them in book form,
and his influence here is most evident in the earlier sections of Chapter III,
concerning the relation between belief and action. He also very kindly
provided me with detailed criticisms and comments on those sections,
which show that some aspects of the theory presented there require
serious modification. ‘Unfortunately, pressure to meet a publishing dead-
line has prevented me from taking these criticisms into account here, and
all 1 can say here is that 1 intend to more fittingly acknowledge them in
later work in the way that matters most: namely by demonstrating their
influence on My OWN Views.

1 should like also to express my thanks to Savannah Ross, Yulia
Motofuji, Julie Martinson, and Katy Dreith who have wrestled with the
manuscript of this book in various stages of its preparation, and especially
to Ruth Suzuki whose excellent and rapid typing alone allowed the manu-
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script to be completed in a last mad scramble to finish in time to meet the
publisher’s deadline. Finally, a grateful salutationis in order to the persons
to whom this book is dedicated, my wife Anne, and sons Jimmy and
Billy, who have lived with and borne with the writing of this book almost

as ﬁuCh as I have, and who I hope most of all will be pleased with the
result.



CHAPTER I

THE INDICATIVE CONDITIONAL

1. A PROBABILISTIC CRITERION OF SOUNDNESS
FOR DEDUCTIVE INFERENCES

Our objective in this section is to establish a prima facie case for the
appropriateness of assessing the soundness or rationality of deductive
inferences in terms of a new requirement or criterion of rationality beyond
the usual truth-conditional criterion: that it should be impossible for the
premises of an inference to be true while its conclusion is false. The pro-
posed supplementary criterion results when the words ‘probable’ and
‘improbable’ are substituted for ‘true’ and ‘false’, respectively, in the
truth-conditional criterion, yielding the probabilistic soundness criterion:
it should be impossible for the premises of an inference to be probable
while its conclusion is improbable. This formulation is vague and we shall
want to clarify it later, but our present concern is with the legitimacy of
demanding that deductive inferences satisfy something like this require-
ment if they are to be regarded as ‘rational’.

Observe that where the premises or grounds of a deductive inference
are not themselves absolute certainties — by far the most common case
outside of mathematics — the conclusion of the inference will not be an
absolute certainty if it depends on the premises. Example: you initially
believe “‘either 4 or B will teach the class”, then learn that 4 will not
teach the class, and thereupon ‘deduce’ that B will teach it.1 In the nature
of things the premises are not the sorts of propositions concerning which
absolute certainty is possible (at least at the time the reasoning is repre-
sented as taking place), and it is obvious that the conclusion could not be
a certainty either in such circumstances.

Hypothesis: in a situation where a reasoner must reason from somewhat
uncertain or fallible premises, he should want to reason in accord with
principles which lead from probable premises to probable conclusions —
because he wants to arrive at probable conclusions. Given such a reasoner’s
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interests, it will be appropriate for him to apply the probabilistic soundness
‘test’ to reasoning patterns and processes to help him to determine whether
they will guide him to the kinds of conclusions he hopes to reach.

Is there a difference in practice between truth-conditional soundness
(soundness according to the truth-conditional criterion) and probabilistic
soundness (soundness according to the as yet vague probabilistic criter-
ion)? Given an intuitively very plausible assumption about the relation
between truth and probability, it would seem that the answer to the fore-
going question should be: very litile. Roughly stated, the assumption is
that the probability of a proposition is the same as the probability that it is
true. A more exact statement is that the probability of a proposition is the
sum of the probabilities of the possible states of affairs in which the propo-
sition would be true (more generally, the measure the set of these possible
states of affairs). The consequence of this assumption is: if an inference is
truth-conditionally sound then the uncertainty of its conclusion cannot
exceed the sum of the uncertainties of its premises (where unceriainty is
here defined as probability of falsity — not to be confused with the entropic
uncertainty measure of Information Theory).?

It is hard to overemphasize the importance of the foregoing as a justi-
fication for working exclusively with truth-conditional soundness in the
analysis of inferences involving propositions to which the “probability
equals probability of truth” assumption applies. The theorem tells us
that if there are only a few premises, each with a ‘reasonably small’ un-
certainty (and what ‘reasonably small’ is will vary with circumstances), 2
truth-conditionally implied conclusion cannot be very improbable -
though it can obviously be more improbable than any individual premise.
1t is only where there are many premises whose uncertainties can ‘acu-
mulate’ in an unfortunate way (as in the Lottery Paradox — see [39]),
that we find serious divergence between the truth-conditional and proba-
bilistic criterion, and truth-conditional soundness becomes a necessary
but not a sufficient condition for probabilistic soundness. In such cases
common sense supports the appropriateness of insisting on probabilistic
soundness, since it is patent that even truth-conditionally sound infer-
ences from a lot of ‘shaky data’ can be highly unreliable.

So we know that we must watch out for uncertainty accumulation in
deductive inferences from too many premises. However, this sort of
divergence between truth-conditional and probabilistic soundness will
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not concern us in what follows — although there are many interesting
methodological and mathematical problems connected with the analysis
of this phenomenon, some of which are discussed in a joint paper by
Howard Levine and the author [7]. What we want to argue next is that
there is a much more radical divergence between the two soundness
criteria in application to inferences involving conditional propositions,
which is ultimately traceable to the failure of the probability equals
probability of truth assumption in application to conditionals.

2. CONDITIONALS AND CONDITIONAL PROBABILITIES

The fundamental assumption of this work is: the probability of an indi-
cative conditional of the form “if A is the case then B is” is a conditional
probability. This assumption, which has been suggested and then appa-
rently abandoned by such authors as Ramsey [45] and Jeffrey [33]3, is
that the probability of “if 4 then B” should equal the ratio of the proba-
bility of ““4 and B” to the probability of 4 (ratio of conjunction of ante-
cedent and consequent to antecedent). For the present we shall have
to let the assumption rest on its immediate intuitive plausibility (or the
plausibility which we hope to give it by considering some of its applica-
tions), but it must be acknowledged that the assumption is quite contro-
versial at the present juncture — largely, one suspects, because its implica-
tions are radical.4 Chapter III of this book will attempt a justification of
the assumption by appeal to ‘appropriateness’ considerations — what one
wants of conclusions he arrives at of conditional form. For now we will
confine ourselves to considering applications.

First note that the ratio or conditional probability measure of the
probability of ““if A then B differs from the probability of the correspond-
ing material conditional. Symbolizing, let the material conditional with
antecedent A and consequent B be written 4> B, and let the corre-
sponding ‘ordinary English indicative conditional’ be abbreviated 4=>B.
Writing probabilities with the function symbol ‘p’ and uncertainties with
‘w’ (where uncertainty equals 1 minus probability), we have important the
formula:

u(A> B)

M) wa=B)==r
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Tllustration: Let A be “a number less than three will be rolled” (concern-
ing the roll of a fair die) and let B be “an even number will be ro?led..”
The conditional probability of B given 4, which we are postulating is
equal to p(4=B), is equal to p(4 & B) divided by p(4), which is easily
seen to be 1/6 divided by 2/6. It follows that p(4=-B) should be 1/2, and
s0 u(4 = B) should be 1 —1/2=1/2. On the other hand there are five ways
in six in which the material conditional 4 > B can be true, hence p(4 > B)
=5/6 and u(4> B)=1/6. Dividing u(4 > B) by p(4)=2/6 gives u(A.=>B),
as stipulated by Equation (1). What the equation shows in general is that
the uncertainty of the indicative conditional is never less than that of the
corresponding material conditional, and is in fact greater except in the cases
where: (1) both uncertainties are 0, or (2) their common antecedent, A,
has probability 1.

The discrepancy between the material conditional’s probability and
that of the corresponding indicative conditional explains why it would be
irrational to make inferences in accord with one of the notorious ‘falla-
cies’ of material implication, not because such an inference would fail
to meet the truth-conditional test for soundness, but because it would fail
to meet the probabilistic one. The fallacious pattern is to infer “if 4 then
B” from “not A”, which can be written symbolically with the premise
above and the conclusion below a line:

-4
A=B

The inference of the material conditional 4>B from —4 is truth-
conditionally sound so it follows that the uncertainty of 4>B can .be
no greater than that of —A: u(4> B)<u(—4). However, the indicative
conditional’s uncertainty, u(4=>B), which is what we are interested in,
will generally be greater than u(4 > B), and in fact will ordinarily be gluch
greater in this case since u(4 = B) equals u(4> B)/p(4), and p(4) will be
small because p(—4) is close to 1. We will see shortly that in faf:t the
premise probability p(—A4) can be ‘arbitrarily close to certainty’ while the
conclusion probability, p(4=-B), can equal 0, and this must surely be
the reason why persons do not in practice normally reason in accord with
this fallacious pattern.

Does the fault in the usual logical analysis of inferences involving con-
ditionals lie solely in the ‘mistaken’ ascription of the material conditional’s

THE INDICATIVE CONDITIONAL 5

truth-conditions to the indicative conditional? We want to argue next,
adapting to our purpose a most important triviality result of David Lewis
[40], that the problem is much deeper. If the conditional probability
measure for conditional’s probabilities is correct, and given other standard
assumptions of probability theory, there is no way of attaching dichotomous
truth values to conditionals in such a way that their probabilities will equal
their probabilities of being true. The foregoing would imply that it is hope-
less to hunt for the ‘right’ truth-conditions for conditionals which can be
used in testing the truth-conditional soundness of inferences involving
such propositions, if it is also required that truth-conditional soundness
should closely approximate probabilistic soundness in the way it does
in the case of inferences involving only ‘factual’ propositions. This may
be connected with our reluctance to apply the term ‘true’ in the standard
logical way to conditionals (we will have more to say about this in
Chapter III), but whatever the fate of the truth-conditional analysis of
the conditional, we can at least say that the foregoing implies that truth-
conditional soundness cannot be the unique and central criterion of
rationality for inferences involving conditionals that it is for inferences
involving only factual propositions. Again, it would be hard to overstress
the importance of this conclusion, for it would mark an unmistakable
limit to the reach of truth-conditionality.

Now the argument. The more definitive argument is somewhat techni-
cal, and it may help to preface it with a simpler one which is not entirely
conclusive. Note that the conditional probability p(4=-B) is almost a
function of the probabilities p(4) and p(4 & B). The only exceptional
case is that in which p(4)=p(4 & B)=0 and the ratio of the two
probabilities is undefined.5 Ignoring this difficulty and supposing for the
moment that p(4=-B) is always a function of p(4 & B) and p(4), it
would follow that the truth-value, ¢ (4=>B), of 4=>B should be a func-
tion of the truth-values ¢ (4 & B) and ¢ (4). For, if the latter were not so
there would exist propositions 4; and B, and 4, and B,, and a possible
assignment of truth-values given by a function # (#’s values would be
truth-values in some ‘possible state of affairs’) such that ¢ (4,)=1 (4,) and
t(A; & By)=1 (4, & B,), but t (4, = B,)#1 (4, = B,). If the foregoing
were really possible, then it should also be possible for these facts to
become known as certainties: i.e., propositions known to be true should
have probability 1 while those known to be false should have probability
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0. It would follow from this, though, that p(4,)=p(4,) and p(4; & B;)=
p(4, & B,) while p(4; = B,)# p(4, = B,), contradicting the probability
functionality assumption.®

In order to get round the difficulty caused by the fact that p(4= B) is
not defined when p(4) is 0, we proceed as follows. To simplify, let truth-
functions, ¢, have the values 1 and 0 (1 for truth and 0 for falsehood), from
which it follows directly that truth-functions satisfy the formal laws (the
Kolmogorov axioms [36]) for unconditional probability functions. As-
suming that conditionals have truth-values, however, it would also follow
that ¢ (4=>B) was always defined and had the value 1 or 0, no matter
what the truth or probability of 4 and 4 & B might be. Now we make two
essential assumptions whose significance will be discussed below: that
any truth function is a possible probability function and any 50-50
‘mixture’ of truth-functions is a possible probability function. Intuitively,
what this amounts to is assuming that for any possible state of affairs it
is possible that it be certain to be the actual state of affairs, and for any
two possible states of affairs it is possible that each have probability .5 of
being the actual state of affairs. The latter implies that if ¢, and ¢, are two
truth-functions, then the 50-50 mixture 1/2¢;+1/2¢, should satisfy the
laws of probability, and furthermore this should be the case even in appli-
cation to conditionals.

Now make use of the fact that for any probability function, p, it follows
from the law of conditional probability that so long as p is defined

p(4) p(4 = B) = p(4 & B).

The above should hold in particular for truth-functions, ¢, and 50-50
mixtures 1/2¢, + 1/2t,, hence it would follow that

t(A)-t(4=>B)=1(A&B)=1(4)t(B)

(the second equation simply being the rule relating the truth-value of a
conjunction to the truth-values of the conjuncts). Also it follows by
simple algebra that:

(11(4) — 12(4))* (11 (4 = B) ~ 1,(4 = B)) = 0.

The above two equations imply that if there is any possible state of affairs,
t, such that # (4)=0 (4 is not logically true), then for any B, B must have
the same truth value in all states of affairs in which 4 is true. But this
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entails in turn that there could not exist tiree truth-functions, f,, t,, and
t3, which were ‘distinguishable’ in the sense that there existed proposi-
tions 4, B, and C such that ¢, (4)1,(A), 1,(B)#t;(B), and 1,(C) # 5 (C).

The upshot of the foregoing is that the assumption that conditionals
are truth-functional and their probabilities are conditional probabilities
leads to the conclusion that there can be only fwo possible states of affairs
and associated truth-functions - which would further imply that there could
be only four probability values. This ‘trivializes’ truth and probability.

Various attitudes which one may adopt towards the foregoing triviality
result will be commented on in 2 moment, together with the connection
between the present result and Lewis’s own results. First, however, it
should be noted that if all of the assumptions leading to the result are
accepted, then the futility of a truth-conditional analysis of the conditional
which is adequate as a basis for the theory of the rationality of inferences
involving it is established. This implies equally to the familiar material
conditional analysis and to more recently proposed ‘possible worlds’
theories such as that of Stalnaker [53]. Truth conditions are just not
enough.

Now to the assumptions, possible attitudes towards them, and their
connections with Lewis’s assumptions and results. Fundamentally, and
somewhat roughly, there were four basic assumptions: (1) probabilities
satisfy the usual laws of unconditional probability (Kolmogorov axioms),
(2) probabilities of conditionals, where defined, are conditional probabili-
ties, (3) truth-values, including those of conditionals, are always defined,
and (4) truth functions and probability mixtures of truth functions are
probability functions. It is possible to avoid the triviality results by giving
up or modifying any one of the four assumptions. Lewis himself gives up
(2) - that probabilities of conditionals are conditional probabilities.
Van Fraassen [60] in effect gives up (4) and shows that the other three
assumptions are consistent and don’t entail triviality. Skyrms [50] has
proposed modifying (1), but only in application to conditional proposi-
tions and compounds containing them as constituents. The author’s
opinion, of course, is that either (3) must be given up, or it must be ad-
mitted that probability does not equal probability of truth (which is
implicit in (4)). Which of these attitudes is ‘right’ is clearly something
which cannot be decided on formal grounds alone, and we will argue in
Chapter III, where the matter is examined, that something more than
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“intuitive appeal’ must enter in. For the moment we must let the matter
rest, with the understanding that it will be taken up in Chapter III, and
that in the meantime we are exploring the consequences of only one ‘way
out’ of the triviality results.

Finally, we should note the connection between the present result and
Lewis’s one, and the assumptions on which it was based. What Lewis
showed explicitly was that probabilities couldn’t attach to compounds
containing conditional constituents and still satisfy all of a number of
desirable laws. It is obvious that this result must be closely connected to
the possibility of attaching truth-values to conditionals in such a way that
probability equals probability of truth — for if the latter were possible
there should be no difficulty about attaching probabilities to truth-func-
tional compounds of conditionals. This matter will be returned to in
Section 8.

Lewis’s basic assumptions differ from the four made here in that in
place of our assumption (4) (that truth-functions and probability mix-
tures of them are probability functions) Lewis assumes that probabilities
change by conditionalization (the probability attaching to B after 4 is
learned to be the case should equal that previously attaching to A= B).
Both our assumption and Lewis’s have the effect of assuring the existence
of a space of possible probability functions which has a ‘structure’ in that
these functions are interrelated in certain ways. Both of these structural
assumptions (i.e., assumptions about the structure of the probability
function space) are commonly made and they are closely connected.
Probability change by conditionalization is probably the more funda-
mental ‘probability transformation operation’, but probability mixing is
a kind of inverse of this. Where conditionalizing never increases and
generally decreases entropy (information-theoretic uncertainty), mixing
generally increases it. More importantly, the ‘pure probabilities’ (in our
case truth-functions) which are involved in a mixture (e.g. a 50-50 mixture
of truth-functions) can generally be recovered from the mixture by condi-
tionalization, and this holds of all of the mixtures considered in our
argument. In any event, it becomes clear that probability space structure
assumptions, which have until recently received scant attention in the
literature on the foundations of probability (Teller [57] is an important
exception to this), require careful examination if triviality results and
their implications for the logic of conditionals are to be evaluated.

i
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3. INFORMAL ASSESSMENT OF SOME PATTERNS
OF CONDITIONAL INFERENCE

The objective of this section is to introduce an informal but pedagogically
useful method for assessing inference schemata involving conditionals,
and illustrate its usefulness in application to certain well known patterns.
The method involves the use of something like the Venn diagram for re-
presenting probabilities visually, which has the advantage of avoiding
explicit work with numerical probabilities.

We begin by supposing that all possible states of affairs are represented
by points within a suitably chosen rectangle, and that factual proposi-
tions like 4 and B are represented by the subregions of the rectangle con-
taining those possible states of affairs in which the propositions are true,
as illustrated in Figure 1 below:

Fig. 1.

So far we have no more than a Venn diagram, which has the advantage of
pictorially representing not only the regions corresponding to atomic
propositions 4 and B, but of representing all of their truth-functional
combinations like —4 and 4 & B at the same time.” Conditional proposi-
tions like 4=>B are not assumed to correspond to subregions of the rec-
tangle — the diagrammatic expression of the fact that conditionals are
not assumed to be true or false in possible states of affairs.

Probabilities are now introduced into the picture by identifying the
areas of the subregions corresponding to particular factual formulas with
the probabilities of the formulas — with the stipulation that the area of
the entire rectangle is assumed to equal 1. In effect, the probability of a
formula is represented as the probability that a point picked at random
within the rectangle should lie within the corresponding region. Again we
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get a representation of the probabilities of truth-conditional compounds
as a bonus along with the probabilities of their atomic constituents, and
in effect the diagram gives a visual expression of the standard laws of un-
conditional probability (e.g., p(—4)=1— p(A4)). There is also a sense in
which the diagram represents a possible probabilistic state of affairs,
where propositions corresponding to large regions are represented as
probable while those corresponding to small regions are represented as
improbable. Note that each possible probabilistic state of affairs ‘compre-
hends’ all possible truth-conditional states of affairs.

Finally, the probability of the conditional 4=>B is identified in the
diagram with the proportion of subregion A which lies inside subregion B.
If most of region A lies inside region B, this is interpreted to mean that
the probability of 4=-B is high, and if most of 4 lies outside of B the
probability of the conditional is low. Given the conventions already
adopted, the probability of 4 =>B is represented as the ratio of the pro-
bability of A & B to the probability of 4 — the conditional probability.
Note that whereas unconditional propositions correspond to regions inside
the rectangle and their probabilities are represented by the areas of these
regions, conditionals are not represented in this way and their probabilities
are not represented by areas. This is the diagrammatic expression of the
fact that conditionals’ probabilities are not probabilities of truth.

Before putting our probabilistic Venn diagrams to work, two essential
limitations should be noted. One is that if p(4)=0 then the probability of
A=>Bis not defined, since in this case the proportion corresponding is not
defined. Just how serious a limitation this is is difficult to say, and through-
out what follows we shall just ignore the ‘zero antecedent probability
case’, with the understanding that when it is taken into account it may
alter our picture of conditionals and their probabilities, and their logical
interrelations.® The second limitation is that while we have represented
the probabilities of atomic factual propositions and their truth-functional
combinations, we have not represented the probabilities of truth-func-
tional combinations of conditionals like conjunctions, disjunctions and
denials of them. This exclusion of truth-functional compounds of condi-
tionals is of course the diagrammatic expression of the fact that there are
fundamental difficulties connected with attaching probabilities to such
constructions, which will be returned to in Section 1.8. The thing to keep
in mind for now is that our probabilistically interpreted Venn diagrams
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represent factual and simple conditional propositions — conditionals with
factual antecedents and consequents — but not more complicated con-
structions.

The use to which Venn diagrams are to be put is in depicting probabilis-
tic counterexamples to inference schemata, in which the premises of a
schema are represented as probable while its conclusion is represented as
improbable. Once this is done we seek conciete examples of propositions
whose probabilities fit the conditions represented by the ‘diagrammatic
counterexample’. To illustrate, consider the two familiar “fallacious’ pat-
terns of material implication:

-4 B
A=B A= B
(to infer 4=>B either from —4 or from B). Figure 2 below represents
simultaneously a probabilistic counterexample to both schemata:

B

Fig. 2.

In the figure 4= B is represented as having probability 0 since none of
region 4 lies inside of B, while both — 4 and B are represented as probable
since both of the corresponding regions nearly fill the rectangle. Hence
we have a possible probabilistic state of affairs in which both — 4 and B
are probable while 4= B is improbable, and this shows the two schemata
to be probabilistically unsound (they fail the probabilistic soundness test).
The analysis is completed by finding real propositions 4 and B whose
probabilities fit the required conditions. These are: (1) 4 must be highly
improbable, (2) B must be very probable, and (3) 4 must ‘probabilistically
exclude’ B. Examples:

A = it will not rain in Berkeley next year
B =it will rain in Berkeley next year.
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The reader may decide for himself whether he would accept and assert — A4
or B, and whether he would deduce 4=>B therefrom.

Some observations are in order before proceeding to other inference
patterns. First, it must be reiterated that our probabilistic counter-
examples do not show that the inference schemata to which they apply are
truth-conditionally unsound: they show rather that the schemata fail to
satisfy another requirement of rationality which it is also desirable that
inferences satisfy. Second, the reason why persons reasoning in real life
should want their inferences to satisfy the probabilistic requirement has
something to do with the fact that ordinarily they cannot be absolutely
certain of the premises from which they reason. This is represented pic-
torially in Figure 2, by the fact that it was essential in drawing that figure
that the premises —4 and B not be represented as complete certainties.
Intuitively, it is plausible that truth-conditional soundness is enough, so
long as premise uncertainties can be neglected. Of course this ignores
the fact that in application to factual inferences truth-conditional sound-
ness is ‘almost’ the same as probabilistic soundness, whereas the two con-
cepts differ much more radically in application to inferences involving
conditionals. This suggests that the conditional has a special connection
to uncertainty, and the second fallacy of material implication (to infer
A= B from B) brings this out. One common use of conditionals is to
express hedges to factual assertions which are not perfectly certain. Thus
one may say “‘the performance will be held outdoors; but if it rains it will
be held indoors.” Obviously not any hedge A=-B on a factual assertion
B (or —B)is rational, and this is why the fallacy of the inference of A=B
from B is obvious, since it suggests that one may never hedge a factual
assertion.

Two technical comments may also be made. Note that while it was
essential for the premises —A and B in the above examples to be less than
complete certainties, they could obviously have been ‘as probable as
desired’ short of certainty. This generalizes to arbitrary inference schema-
ta which are truth-conditionally sound (in the sense that they would be
sound if the conditionals involved were material conditionals) but not
probabilistically sound; it is always possible to find possible probabilistic
states of affairs in which their premises are as probable as desired
short of certainty while their conclusions are as improbable as desired
short of certain falsity. This is shown in Theorem 3.2 of Chapter II.
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Second, the concrete counterinstance to both of the fallacious schemata
was of the form

_—4
A=>—A

whose conclusion has the form of a probabilistic self-contradiction, A=
‘—A. Such a proposition necessarily has probability 0 (except possibly
in the troqblesome case in which 4 has probability 0). This suggests the
appropriateness of formulating probabilistic inconsistency criteria which
are to truth-conditional inconsistency as probabilistic soundness is to
truth-conditional soundness. This possibility is explored in Section L.9,
and is further developed in Chapter II, where probabilistic consistency
provides the basis for a simple approach to the mathematical theory of
probabilistic soundness.

Turning to other schemata, we would not expect schemata which are
truth-conditionally unsound like the conditional inversion schema

A=B
B=A

to be probabilistically sound. Nonetheless such schemata are not without
interest because they sometimes possess a certain plausibility which one
might hope to explain on probabilistic grounds, and inversion in particu-
!aI is interesting because it is closely related to the confirmation ‘inference’
in which persons initially accepting A4=-B and then learning B are apt
not to ‘infer’ 4, but to regard 4 as more probable than before. Figure 3

'conﬁl?ns our expectation concerning the probabilistic unsoundness of
inversion:

>

Fig. 3.
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The figure also tells us what to look for in concrete counterinstances to
the schema: (1) 4 should beimprobable, (2) B should be considerably more
probable than A4, and (3) 4 should ‘probabilistically imply’ B in the
sense that if A is the case then B is likely. Propositions fitting these
requirements are:

A = there will be a terrific cloudburst tomorrow
B = it will rain tomorrow.

Once again the reader may consult his intuitions as to whether he would
accept and affirm 4= B, and whether he would infer B=>A4.

Three remarks on the inversion schema may be made. First, it illustra-
tes our earlier rule that probabilistically unsound schemata can have
arbitrarily certain premises short of perfect certainty while their conclu-
sions are arbitrarily improbable. In the inversion case, though, the
premise may be perfectly certain while the conclusion almost but not
quite has probability 0. Second, the inversion case is an instance of the
general rule that any truth-conditionally unsound schema with probabi-
listically consistent premises is also probabilistically unsound. Except
where premises are probabilistically inconsistent, truth-conditional sound-
ness is a necessary but usually not sufficient condition for probabilistic
soundness. In a sense, then, probabilistic soundness is a stricter sound-
ness requirement than truth-conditional soundness. Finally, Figure 3 gives
some hint concerning the partial ‘plausibility’ of conditional inversion,
which might explain its appeal to the logically unsophisticated. The figure
suggests that where 4 and B do not stand in the special relation in which 4
is much less probable than B, conditional inversion may not be soirrational
after all.

So far we have considered schemata which are truth-conditionally
sound but intuitively irrational (the fallacies of material implication)
and a schema which is truth-conditionally unsoupd (conditional inver-
sion), but we have not considered any which are both truth-conditionally
and intuitively rational. One such is a version of contraposition:

B=—-A4

A= —B"
Intuition and orthodox theory to the contrary however, Figure 3 also
suggests the probabilistic unsoundness of contraposition, since it depicts
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almost all of B lying outside of A (hence B= — 4 is probable) while all
of A lies inside B (hence 4= — B has probability 0). Furthermore the
propositions 4 and B giving a concrete counterinstance to inversion also
provide a counterinstance to contraposition. One might well accept and
affirm B=- — 4, “if it rains tomorrow there will not be a terrific cloud-
burst”, but not infer 4=> — B, “if there is a terrific cloudburst tomorrow
it will not rain.” Of course, if one accepts the probabilistic unsoundness
of contraposition he is in a dilemma: what is to be made of all of the real
life reasoning which seems to be of this form? It is too much to condemn
it as irrational simpliciter. We will argue in the next section that most such
reasoning is rational, only, it is not rational in virtue of being of the contra-
position form. Where such inferences are rational it is because further con-
ditions are satisfied which usually obtain when persons are fold proposi-
tions of the form B=>—A, which are not part of the meaning of the
proposition.

Similar observations apply to the even more important schema of
inference of a conditional from a disjunction:

Av B
—A=B’
Reasoning after this fashion is ubiquitous in daily life, and the pattern is
theoretically important because if it were sound it would justify treating

the indicative conditional as a material conditional for logical purposes.
Figure 4 shows however that the pattern is probabilistically unsound:

®

Fig. 4.

Concrete propositions fitting the requirements of Figure 4 are:

A = it will rain in Berkeley next year
B = it will snow in Berkeley next year.
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One would assert 4 v B, “either it will rain or it will snow in Berkeley
next year”, but it would be paradoxical to infer — 4 =B, “if it doesn’t
rain then it will snow in Berkeley next year.” Again, we are driven to in-
quire into the rationality of common real life instances of the pattern just
brought into question. As with contraposition, we will argue in the next
section that most such reasoning is rational, but not solely in virtue of
being of instances of the pattern.

We conclude this section by noting the probabilistic unsoundness of
three inference schemata of both practical and theoretical importance,
each of which involves three atomic formulas. We begin with the Hypo-
thetical Syllogism which is not only frequently employed (apparently),
but which appears to be implicit in chains of reasoning from ‘assumptions’.
Figure 5 shows the pattern not to be probabilistically sound:

&

Fig. 5.

Examples of propositions whose probabilities fit the requirements de-
picted in Figure 5 would arise in a hypothetical situation in which Smith
and Jones are the only candidates for a public office of which Smith is
the incumbent, and Smith has announced his intention of retiring to
private life in the event of his defeat. Let

A = Smith will die before the election
B = Jones will win the election
C = Smith will retire after the election.

Here it would be proper to affirm both ““if Smith dies before the election
Jones will win” and “if Jones wins then Smith will retire”, but it would
obviously be irrational to infer ““if Smith dies before the election he will
retire.” Again we want to inquire further, rather than condemn all
reasoning after the Hypothetical Syllogism pattern to total irrationality.
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This matter will be discussed further in Section 5, where it will be argued
that what we are accustomed to call Hypothetical Syllogism inference is
really improperly represented in that form.

A pattern which is closely related to the Hypothetical Syllogism and
which will be argued to have considerable theoretical importance is what
we will baptize Antecedent Restriction:

B=C
(A&B)=C’
Obviously Figure 5 also depicts a probabilistic counterexample to this
inference, and the hypothetical examples above furnish a concrete counter-
instance. One might affirm “If Jones wins the election then Smith will
retire” but it would be absurd to infer “if Smith dies before the election
and Jones wins then Smith will retire.” It is interesting that the second
fallacy of material implication

C
A=C
can be viewed as a special case of antecedent restriction, with B replaced
by an arbitrary tautology. Counterinstances to the second fallacy become
ipso facto counterinstances to the Antecedent Restriction inference
schema.

An important partial inverse to Antecedent Restriction also appears
to be quite common in everyday life:

(A&B)=C, A
B=C :

This pattern is most easily seen to be probabilistically unsound by ob-
serving that it reduces essentially to the fallacious schema

A
B=A4
in the special case in which C is set equal to 4. Thus, we may set

A = C = The performance will be outdoors
B =it will rain.
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We might affirm both “if the performance is held outdoors and it rains
then the performance will be held outdoors™ and “the performance will
be held outdoors”, but be unwilling to infer “if it rains the performance
will be held outdoors.” We will have more to say about this pattern in
Section 5.

Having noted some particular logical phenomena involving the condi-
tional, some of them perhaps unexpected, it is time to look deeper, and to
seek some generalities. Two questions arise immediately: (1) Are there
any conditional inference patterns for which probabilistic counter-
examples can’t be given? (2) What are we to say about real life reasoning
(even mathematical reasoning) which appears to conform to probabilistic-
ally unsound patterns? The first of these questions will be the main con-
cern of Chapter II, and in the remainder of this chapter we will be
concerned with partial soundness and related matters.

4. PARTIAL SOUNDNESS AND CONVERSATIONAL
IMPLICATURE CONSIDERATIONS RELATING TO
CONTRAPOSITION AND INFERENCES OF
CONDITIONALS FROM DISJUNCTIONS

We have suggested that the way to approach the question of the status
of real life inferences which appear to be of probabilistically unsound
forms is to consider the special circumstances in which such reasoning is
rational, and to ask whether it is plausible that those circumstances pre-
vail in situations where people reason after the questionable patterns.
Vaguely, we may call the special circumstances in which an inference
pattern is probabilistically sound its conditions of partial rationality.
Contraposition and the inference of a conditional from a disjunction are
not universally (probabilistically) sound, but they are plausibly sound in
a wide variety of circumstances.

Restricting ourselves to inferences involving only factual and simple
conditional propositions, two rules relating uncertainties of premises to
conclusion uncertainties throw light on partial rationality conditions.
These are: (1) The uncertainty of a factual conclusion of a truth-condi-
tionally sound inference cannot exceed the sum of the uncertainties of
the premises, whether or not the premises include conditionals. (2) The
uncertainty of an indicative conditional equals the uncertainty of the
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corresponding material conditional divided by the probability of its
antecedent (Equation (1)). Combining these we get: the uncertainty of a
conditional conclusion of a truth-conditionally sound inference cannot
exceed the sum of the uncertainties of the premises divided by the proba-
bility of the conditional’s antecedent. Hence we can say roughly that if a
truth-conditionally sound inference with conditional conclusion has high-
ly probable premises then its conclusion must be probable provided the
conditional’s antecedent is not highly improbable. Plausible hypothesis:
recognition that a conclusion’s antecedent is not too improbable is a
“tacit premise’ in much real life reasoning which appears to be of a pattern
which is not universally probabilistically sound. The application of this
to contraposition and the inference of a conditional from a disjunction
will be considered in a2 moment. Note first, though, that if ‘recognition of
non-impropability” is to be taken as a tacit premise of reasoning of the
kinds we are considering, then these premises cannot be expressed within
any standard logical symbolism, and it is possible that systematic analysis
of reasoning involving them will require not only a semantic generaliza-
tion of standard logic, but a syntactic one as well.

Now consider the inference of the conditional from the disjunction:

AvB
—A=B"
Combining earlier generalities we get:
Av B
u(-A=p)="AVE
u(d)

hence the conclusion’s uncertainty will be low if the premise uncertainty
is low and u(4) is not too low. It is plausible that in the usual situation in
which one considers disjunctions and what follows from them, their first
disjuncts will by themselves be “fairly uncertain’, hence in those situations
it will be rational to infer a conditional from them.

. Look a bit deeper and consider the situation in which a hearer is told
a proposition of the form 4 v B. Let us assume that the hearer is justified
in believing what he is told, and therefore he may attach as high a proba-
bility to Av B as the speaker himself does. It is also plausible that it is
misleading (though not false) for a speaker to make a disjunctive assertion
where he is in a position to assert one of the disjuncts. Thus, when the
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speaker asserts 4 v B he cannot assert 4 by itself since it is too uncertain,
and so he should also regard — A = B as probable. Hearers having reason
to accept 4 v B when they are told it therefore have reason to think the
speaker might also have told them —4=>B, and plausibly have as good
reason to accept that as to accept the explicitly asserted disjunction. This
‘conversationally implied conditional’ (to borrow Grice’s terminology [26]
as well as his analytical approach) is, however, one which may be ‘can-
celled’, which shows that the implication of the conditional is not ‘part of
the meaning’ of the disjunction. Thus, a speaker may cancel by saying I
know which one of 4 and B is the case but I will only tell you that one of
them is.” In such circumstances the hearer would be justified in concluding
Av B but not in inferring — 4 = B (because it is not improbable that the
speaker says what he says only because he knows that 4 is the case, and
this would not allow the inference to —4 = B).

Two comments on the foregoing are in order. First, our explanation of
the rationality of inferring —A=-B when one is told 4 v B puts the dis-
junction in an unusual light, since it suggests that disjunctions are mis-
leadingly asserted by speakers who know that they are true in virtue of
knowing one of the disjuncts. This runs directly counter to the Intuition-
istic theory of the disjunction according to which it is to be asserted only
if a disjunct is known (Heyting [31], p. 24). At any rate, we are here con-
fronted with a divergence between what it is proper to say without run-
ning serious risk of misleading hearers, and what it is rational to think.
Probability, we would argue, is directly relevant to the latter, but only
incidental to the former.

The second comment is that both Grice [26] and Lewis [40] use con-
versational implicature considerations to prove the opposite of what we
have just argued for: i.e., to prove that the “if... then...> of ordinary
English is logically the material conditional, and that irrationalities like
the fallacies of material implication are to be explained on the basis of
violations of laws of conversational implicature. It is well known that
conversational implicatures are extremely difficult to distinguish from
logical consequences, and at the present juncture the author’s conclusions
as to what is part of the meanings of 4 v B and —4=- B and what is just
conversationally implied by utterance of statements of these forms simply
disagree with Grice’s and Lewis’s conclusions concerning these questions.
How to decide who is right? Even Grice’s tests concerning what can be
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‘cancelled’ may be argued both ways. For now we must simply adopt a
position consonent with our ratio representation of the probability of the
conditional, according to which it is in some sense ‘part of the meaning
of’ the indicative conditional that its probability is appropriately mea-
sured as a conditional probability, and which implicitly contradicts the
conclusions of Grice and Lewis. Chapter III attempts to deal with these
matters, though even there nothing will be conclusively settled.

Similar comments may be made about the contraposition schema. The
uncertainty of the conclusion 4= — B cannot exceed the uncertainty of
the premise B=>—A4 divided by the probability of 4, hence it will be
rational to accept the conclusion ‘given’ the premise unless p(4) is too
small and p(—4) is too great. But in the ordinary situation in which a
speaker makes an assertion of the form B=- —4 it is plausible that it is
unusual for —4 to be by itself probable. Possibly it is misleading and in
violation of conversational ‘helpfulness maxims’ for a speaker to say, e.g.
“if Jones attends the party then Smith won’t” when he also believes
“Smith won’t attend the party.” In such circumstances one feels the ‘even
if” locution to be the appropriate one, as in “Smith won’t attend the party,
even if Jones attends” or “there won’t be a terrific cloudburst, even if it
rains.”? Granted this, it would follow by an argument analogous to one
applying to inferences of conditionals from disjunctions that hearers are
justified by conversational implicatures in contraposing and inferring
A= — B when speakers make statements of the form B=-— 4. Note that
while contraposition and conditional inversion stand on all fours as
regards purely probabilistic soundness, the same conversational implica-
tures which justify the inference of A= — B in situations where one is
told B=> — A do not justify inverting and inferring B=-4 when one is told
A= B (though it is arguable that being told A= B should increase the
probability of B=>4).

5. THE HYPOTHETICAL SYLLOGISM AND ASPECTS
OF HYPOTHETICAL REASONING

The rationality of apparent instances of such Hypothetical Syllogism in-
ferences as
If Jones studies he will pass. If he passes he will graduate.
Therefore, if he studies he will graduate.
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is not plausibly explained by reference to conversational implicatures,
and we now suggest that the right way to view reasoning of this sort is to
regard the second premise as elliptical. More exactly, we suggest that the
‘hypothesis’ of the first premise (the antecedent of the conditional) is
tacitly ‘presupposed’ in the second, and analysis of the reasoning requires
that this presupposition be made explicit as in:

If Jones studies he will pass. If he passes (still supposing he
studied) he will graduate. Therefore, if he studies he will
graduate.

We will not attempt a rigorous justification of the foregoing intuitively
plausible suggestion, but we will now see that if the suggestion is correct
it would explain why apparent Hypothetical Syllogism inferences are
rational, and also see that the suggestion links Hypothetical Syllogisms
in a natural way to certain kinds of hypothetical reasoning from assump-
tions, and related inference patterns.

Observe first that what is wrong in the Smith-Jones election counter-
instance to the Hypothetical Syllogism cited in Section 3 is just that its
second premise cannot be ‘restricted’ by adding the hypothesis of the first
premise to its antecedent. Making this restriction would in fact yield an
inference with an absurd second premise:

If Smith dies before the election then Jones will win. If Jones
wins (still supposing Smith died before the election) then
Smith will retire after the election. Therefore, if Smith dies
before the election he will retire after the election.

Second, we will see in Chapter II that making the tacit presupposition of
the second premise of a real life Hypothetical Syllogism explicit trans-
forms it into an instance of the Restricted Hypothetical Syllogism pattern

A=B,(A&B)=C
A=C

>

which is universally probabilistically sound in that the uncertainty of its
conclusion can never exceed the sum of the uncertainties of its premises.
Thus, our suggestion is that when apparent Hypothetical Syllogisms are
properly analyzed as Restricted Hypothetical Syllogisms, it is not neces-
sary to inquire further into their conditions of partial soundness since
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such inferences are universally sound. Conversely, purported counter-
instances to the Hypothetical Syllogism are in a sense ‘unrealistic’ be-
cause they do not transform to Restricted Hypothetical Syllogisms in the
ordinary way. Of course, this does not mean that it is not important to
recognize that real life Hypothetical Syllogisms are elliptical (assuming
this is so), for failure to recognize this makes the development of an
adequate theory of such reasoning very difficult.

Very similar remarks can be made about the partial inverse to the
Antecedent Restriction pattern

(A&B)=C, A
B=C

mentioned in Section 3. Though this pattern is not universally sound,
apparent instances of it are very common, as in:

If the President and Secretary are present, the meeting can
begin. The President is present. Therefore, if the Secretary is
present the meeting can begin.

As with the Hypothetical Syllogism, it is plausible that in reasoning
of this sort the second premise is elliptical, and making a tacit presupposi-
tion explicit transforms it to:

If the President and Secretary are present the meeting can
begin. The President is present (even if the Secretary is
present). Therefore if the Secretary is present the meeting can

begin.
This transforms the inference to the form
(A& B)=C, A (evenif ) o (A&B)=C,4,B=A4
T
B=C B=C

which is universally probabilistically sound since it is in fact a special case
of the Restricted Hypothetical Syllogism.

Hypothesizing that apparent instances of Hypothetical Syllogisms and
related forms are elliptical and involve tacit suppositions suggests a close
connection between this type of reasoning and certain kinds of hypothe-
tical reasoning from suppositions or assumptions, such as in the following
example of a Conditional Proof:
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Suppose the Dodgers don’t win the pennant. Then the Reds
will win the pennant. If the Reds win the pennant they will not
win the World Series. So, if the Dodgers don’t win the pennant,
the National League team will not win the World Series.

Our suggestion is that this reasoning is not properly analyzed by regarding
the initial supposition as an independent ‘premise’, but rather by re-
garding the supposition as a prior ‘formulation’ of a hypothesis which is
common to a series of succeeding conditionals and which it is convenient
to formulate once at the outset rather than repeatedly. Thus analyzed,
the above reasoning is to be regarded as having the same force as:

If the Dodgers don’t win the pennant then the Reds will. If the
Reds win the pennant (still supposing the Dodgers don’t) they
won’t win the World Series. So, if the Dodgers don’t win the
pennant the National League team will not win the World
Series.

Here we have something very close to a Restricted Hypothetical Syllogism.

Our suggested reduction. of Conditional Proof to reasoning without
‘assumptions’ is of course no more than an application of the steps used
in proving the Deduction Theorem to real life reasoning of the Condi-
tional Proof pattern. This reduction takes on an added importance in the
real life application, however, because it is the key to applying probabilis-
tic analysis to such reasoning. Two facts should be noted: (1) Conditional
Proof is not universally probabilistically sound, and (2) the direct appli-
cation of our probabilistic soundness criterion only makes sense where the
premises of the inferences in question are accepted propositions, and does
not make sense where ‘premises’ include ‘assumptions’ or ‘entertained
but not accepted propositions.” To show that Conditional Proof is not
always probabilistically sound it is sufficient to note that if it were sound
it would be possible to derive the fallacious pattern

B
A= B’

Thus, accepting B and assuming 4, B would follow, and therefore A=>B
should follow from B alone by Conditional Proof. On the other hand, the
very fact that persons commonly appear to reason after the Conditional
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Proof pattern suggests that such reasoning ordinarily is sound, and the
way to analyze its conditions of soundness is reveal its ‘deep structure’ by
transforming it to reasoning involving only accepted propositions (as in
the baseball example). The details of such an analysis remain to be worked
out, and this matter will not be pursued farther here, since we are con-
cerned in this book primarily with direct inference.

Finally, we may wonder whether the technique of reduction to direct
inference (not involving assumptions) for the purpose of applying
probabilistic analysis will work in the case of other familiar patterns of
indirect reasoning. We would conjecture that such a reduction will work
in the case of Proof by Cases (used in reasoning from premises of dis-
junctive form, where each disjunct is ‘assumed’ in order in arriving at a
conclusion), but not in the case of Reductio ad Absurdum. The special
problem which arises in the Reductio case is that the propositions in-
volved are generally expressed in the subjunctive or counterfactual mood,
and reduction to direct inference would lead to counterfactual condi-
tionals. These are known to involve special difficulties, and we will see in
Chapter IV that to the extent to which probabilistic analysis applies to
them at all, it is in 2 much more complicated way than in its application
to indicatives.

6. THE SCOPE OF ANTECEDENT RESTRICTABILITY

It was noted in Section 3 that the Antecedent Restriction schema

B=C
(A&B)=C

is only partially sound, and in this section we will be concerned with those
propositions A4 which can be conjoined with the antecedents of accepted
conditionals B=C (on particular occasions) without rendering them
improbable or unacceptable. Roughly, let us call the class of propositions
A which can be conjoined with the antecedent of an accepted (sufficiently
probable) conditional B=>C without rendering it unacceptable on an
occasion the scope of antecedent restrictability, or, more briefly, the scope
of the conditional on the occasion. The intuitive significance of the scope
of an accepted or asserted conditional is that it comprises those factual
propositions which are probabilistically compatible with the conditional
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in the sense that coming to accept such a proposition as a certainty would

not lead to retracting the original conditional (matters of retraction in

the light of new information will be taken up in Chapter IV).
Inequality (3) below gives useful information about the scope of an

accepted conditional B=C':

u(B=C)

()  w(A&B =< Em

(note the resemblance to Equation (1) where an uncertainty is divided
by a probability on the right). An immediate consequence of (3) is that
the more probable B=C is the broader its scope will be, and if B=>Cis
certain then its scope will be universal in the sense that all factual proposi-
tions will be included (though complications can arise here when the
presently disregarded cases of zero antecedent probability are taken into
account). This is a reflection of the fact that the more certain a proposi-
tion is, the less likely it is to be overthrown by new evidence.

Any proposition 4 such that p(4=>B) is not too low will belong to the
scope of B= C, but this fact may be generalized and put into perspective
as follows. Note first that the concept of scope can be extended to cover
accepted factual propositions C by the device of regarding C as the con-
sequent of a conditional B=>C with tautologous antecedent B. ‘What was
said above about conditionals then applies to factual propositions as well:
the more probable they are the larger their scopes are, and when they are
certain their scopes are universal. We may also add the following which is
true of factual but not of all conditional propositions: any accepted fac-
tual proposition includes any other accepted factual proposition in its
scope. Figuratively, the scope of an accepted factual proposition includes
the “accepted world’ (the class of all other factual propositions accepted
on the same occasion). This generalizes to certain conditional proposi-
tions.

What was said about conditionals’ scopes at the beginning of the previ-
ous paragraph can be restated as follows: the scope of an accepted condi-
tional B= C includes all factual propositions 4 which include the condi-
tional’s antecedent, B, in their scopes. Any proposition B which is not too
improbable will belong to the scope of all accepted factual propositions
A, and therefore if B is not too improbable an accepted conditional B=C
must also include all accepted 4 in its scope — its scope includes the
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accepted world. Generalizing, we can say that the more probable Bis, the
larger the scope of accepted B=>C will be, and the more probable 4 is,
the more likely it will be to be in the scope of B=-C. In particular, if 4
is certain it will certainly belong to the scope even of somewhat uncertain
B= C — the scope of conditional B=-C must include the ‘known world’
(the class of all propositions known as certainties). Summing up: a condi-
tional proposition’s scope always includes the known world and will
include the accepted world if its antecedent is not too improbable ~ and
factual propositions can be regarded as conditionals with ‘not too im-
probable’ (tautologous) antecedents.

Various other properties of scope might be examined, but we will con-
clude here by noting that this concept can be generalized to apply to other
conditionals like material and counterfactual conditionals as well, and
that this generalization provides an interesting way of comparing them.
Let Cond (B, C) be any kind of accepted conditional; then 4 can be said
to belong to the scope of Cond (B, C) on some occasion if Cond (4 &B,
C) s also acceptable on that occasion. Though this generalized notion of
scope can no longer be identified with the class of propositions which are
probabilistically compatible with conditionals other than indicatives,
the following may be noted. The scope of an accepted material condi-
tional is always universal since p((4 & B)> C) is always at least as high as
p (B=C). The scope of an indicative conditional is only universal if it is
perfectly certain, but it always includes the known world (all propositions
with probability 1), and it includes the accepted world (all propositions
which are ‘sufficiently probable’) if its antecedent is not too improbable.
We will see in Chapter IV that the counterfactual’s scope usually in-
cludes Jess than the known world, and in fact includes all of the known
world only if it coincides with the corresponding indicative conditional.
More generally, we will find systematic ambiguities in the counterfactual
which are ultimately traceable to ambiguities in their scopes, and which
can only be resolved ‘contextually’.

For now, however, we are concerned only with indicative conditionals,
and the thing to be kept in mind is that the scope of a conditional defines
the conditions of partial rationality of Antecedent Restriction inferences
involving it, which depends primarily on two things: (1) the certainty of
the conditional, and (2) the certainty of the propositions which can be
conjoined with the conditional’s antecedent. The next section examines
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another kind of Antecedent Restriction inference, which involves an un-
doubted anomaly in the applicability of our theory.

7. A DIFFICULTY ABOUT CONDITIONALS
WITH DISJUNCTIVE ANTECEDENTS

We pause briefly in this section to consider a difficulty which is most
easily, if superficially, disposed of as a problem of formalization. This ari-
ses in the analysis of the ‘disjunctive restriction’ inference pattern

(A4vB)=C
B=C

which is formally just a trivial variation on the ‘conjunctive’ restriction
pattern already discussed. As with the previously discussed pattern it is
easy to construct a Venn Diagram representing the premise as highly
probable (because most of the union of 4 and B lies inside C) while the
conclusion is improbable (because most of B lies outside C). Figure 6
below depicts such a probabilistic state of affairs:

©

Fig. 6.

Our problem arises in attempting to translate the probabilistic relations
represented in the diagram into a concrete counter-instance to the schema.
It is required to find propositions 4, B, and C such that: (1) B is much less
probable than 4, (2) 4 probabilistically entails C, and (3) B and C
‘exclude’ one another. The three propositions below, drawn from our
Smith-Jones election example, fit these requirements:

B = Smith will die before the election.
A = Jones will win the election.
C = Smith will retire after the election.
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However, when these propositions are substituted for ‘B’, ‘4’, and ‘C’,
respectively, in the schema, instead of arriving at a highly probable
premise and a highly improbable conclusion we end with an inference
whose premise is absurd:

If either Jones wins the election or Smith dies before it then
Smith will retire. Therefore, if Smith dies before the election
he will retire.

At the heart of the difficulty above is the fact that while according to
the laws of probability we have assumed until now the premise is probable,
nevertheless the premise is intuitively absurd. Nor is this intuitive absurdi-
ty to be explained in terms of conversational implicatures. Such an ex-
planation would entail that the inference of “if B then C” from the
premise “if either 4 or B then C” was justified by a conversational impli-
cature which was not part of the meaning of the English expression “if
either 4 or B then C”. But this implication cannot be ‘cancelled’ in the
way it is possible to signal the impropriety of the hearer’s inferring the
contrapositive, without at the same time rendering the original affirma-
tion unintelligible.

In the light of the foregoing, we must conclude that it is inappropriate
to apply probability measures in the standard way to propositions ex-
pressible in English in the form “if either 4 or B then C”. For complete-
ness’ sake, however, we will continue to use the symbolism ‘(4 v B)=>C’,
and to attach probabilities to such formulas in the way we have previously
done. The consequence, though, is that we must avoid symbolizing ““if
either 4 or B then C” as (4 v B)=>C’, and must analyze reasoning in-
volving the former in some other way. Admittedly this is hardly desirable
in work which aims to improve on orthodox logic’s excessive preoccupa-
tion with formalism to the neglect of application, but in mitigation it is
possible to suggest a way of analyzing reasoning involving “if either 4 or
Bthen C* within the probabilistic framework. This is to treat this expres-
sion as having the same logical force as the conjunction “if 4 then C and
if B then C.” We cannot symbolize the transformed form directly since it
involves a conjunction of conditionals and these are not included in our
formalism (because probabilities do not apply to them, and we want to
avoid formulas to which probabilities don’t attach). However, whenever
‘if either 4 or B then C’ appears as a premise, then this premise can be



30 CHAPTER I

symbolized by the addition of two premises 4 = C and B=-C to the other
premises of the reasoning.

Two concluding remarks may be made on issues connected with
conditionals with disjunctive antecedents. First, our proposal to represent
““if A or Bthen C” as the conjunction “if 4 then C and if B then C” for
purposes of logical analysis allows us to avoid another problem about
these forms: namely that they appear to violate the principal of inter-
substitutability of logical equivalents. If we agree that the two statements

Jones will win.

and
Either Smith won’t die before the election and Jones will win
or Smith will die before the election and Jones will win.

are logically equivalent, then it should follow from the inter-substitutabil-
ity principal that the conditionals

If Jones wins then Smith will retire.

and
If either Smith doesn’t die before the election and Jones wins
or Smith does die before the election and Jones wins, then
Smith will retire.

were equivalent. However, the first is very probable while the second is
absurd. The proposal to read the latter as a conjunction of conditionals
avoids the difficulty by treating conditionals whose antecedents are of the
grammatical form of disjunctions as being in reality of a different logical
form. This is not entirely satisfactory of course, since we would still
like to know why the disjunctive grammatical form is employed if it is not
‘logically meant.” This must be left as an unsolved problem for now,
however.

The second remark concerns forms related to the conditional with dis-
junctive antecedent, and especially the only if construction. Consider
the proposition

Jones will win only if he draws an ace.
The standard logical analysis is to treat this as equivalent to

If Jones doen’t draw an ace then he won’t win.
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However a plausibly better paraphrase should replace the antecedent
“Jones won’t draw an ace” by the superficially equivalent “Jones will
draw a 2 or draw a three or...” so that the ‘only if” gets analyzed as a
conditional with a disjunctive antecedent:

If Jones draws a 2 or draws a 3 or... (anything besides an ace)
then he won’t win.

And, according to our suggested reading of conditionals with disjunctive
antecedents, this is to be construed logically as a conjunction

If Jones draws a 2 he won’t win, and if he draws a 3 he
won’t win, etc.

The upshot of this proposal is that only if is not to be treated as a ‘simple’
conditional construction, and in consequence we are not to apply a single
numerical probability to propositions like “Jones will win only if he gets
an ace”.

The next section discusses the general problem of dealing with com-
pounds like conjunctions with conditional conjuncts within our proba-
bilistic framework.

8. THE PROBLEM OF COMPOUNDS OF CONDITIONALS

It is a drawback to our probabilistic approach in comparison to the usual
truth-functional one that it does not provide us with a theory of inferences
involving compound propositions with conditional constituents, whereas
truth-conditional logic does provide such a theory. We shall shortly see
that there are serious difficulties to confront in extending probabilistic
analysis to these problematic propositions and inferences involving them,
but we want to argue first that it is a somewhat dubious ‘advantage’ to the
truth-conditional approach that it does apply to such inferences. The
application is a very poor one, and it might be much better to frankly
admit that at present we don’t understand such constructions rather
than to delude ourselves with a very inadequate theory. A few examples
of misapplication are given below, which it is hoped that the reader will
recognize as typical. More systematic survey of these inferences is out of
place here, since forthcoming work by William Cooper [12] investigates
these matters in detail.
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First consider denials of conditionals, which notoriously fail to con-
form to the tenets of truth-conditional theory. Thus, truth-conditional
logic would hold the following to be sound:

It is not the case that if it rains then the exercises will be held
indoors. Therefore, it will rain.

This fallacy is well known, and the only thing to be noted about it here
is that it is the inverse of the fallacy of material implication

It will not rain. Therefore, if it rains the exercises will be held
indoors.

It is somewhat odd that there are many to be found who defend the
rationality of the latter inference, though the former is almost without
exception condemned as irrational.

Turning to disjunctions with conditional components, there are many
problems. One is that the form “either 4 or if A then B” is a tautology
when analyzed truth-conditionally, hence it should be acceptable no
matter what. However, it is not evident that one would want to maintain

Either it will rain or if it rains the exercises will be held
indoors.

under any circumstances, particularly in view of the fact that both dis-
juncts can be extremely improbable at the same time. Of course, the non-
tautologousness of this form is closely connected with the fact that the
inference of A=>B from — A is not always sound.

A related fallacy is the inference of “either 4=>C or B=>C” from
(4 & B)=>C, which is truth-conditionally sound but often absurd as in:

If switches A and B are thrown the motor will start. Therefore,
either if switch A is thrown the motor will start or if switch B
is thrown the motor will start.

(this example originally appeared in [1]). Again, the absurdity becomes
manifest when we recall that the premise can be arbitrarily highly pro-
bable while both disjuncts in the conclusion are simultaneously arbitrarily
improbable.

Conjunctions of conditionals cause no special problems for truth-
conditional logic, but by the same token they present no difficulties for
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probabilistic analysis so long as they are treated as joint assertions where
probabilities attach to the individual conjuncts and not to the conjunc-
tion as a whole.

One might anticipate difficulties with conditionals which contain other
conditionals in their antecedents, and the following example bears this out:

If it is the case that if Jones studies he will pass logic, then he will
pass logic. Therefore, if Jones doesn’t study he will pass logic.

Pity poor Jones if he learns logic so well as to begin to reason in this
way!10 Conditionals with other conditionals in their consequents would
seem less problematical because of the intuitive plausibility of the equiva-
lence of A=> (B=>C) and (4 & B)=>C. Nonetheless, acceptance of this
equivalence would entail giving up Modus Ponens in application to
conditionals with conditional consequents. Thus, (A&B)=4 is a
tautology which should be acceptable no matter what, and the equiva-
lence would then imply that 4 = (B=>4) should also be acceptable no
matter what. If Modus Ponens were valid, then we should always infer B
=4 from 4 together with the universally acceptable 4= (B=> 4). But
we know independently that this inference is not always sound.

What of the possibility of extending probabilistic analysis directly to
compounds of conditionals by defining suitable measures of the proba-
bilities of these compounds? We might be warned by the fact that proba-
bility theory does not use such measures that there should be difficulties
in principal in the way of effecting such an extension, and David Lewis’
triviality result [40] can be viewed as showing clearly what those difficul-
ties are. Before considering Lewis’ own argument, though, it is to be noted
that the straightforward extension of probability to compounds of con-
ditionals stands or falls with the possibility of defining truth for simple
conditionals in such a way that probability will equal probability of
truth. Obviously if probability could be equated with probability of
truth in the case on uncompounded conditionals, there would be no
problem about defining the probabilities of compounds like conjunctions
of conditionals; i.e., as the probability that both conjuncts are true.
Conversely, suppose probabilities could be applied to both conjunctions
and denials of conditionals in such a way as to satisfy the usual axioms
(e.g. that the probability of a disjunction of inconsistent propositions
equals the sum of the probabilities of the disjuncts). Then probabilities
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would apply to Carnapian state descriptions with conditional constituents,
which would act formally like possible states of affairs, and probabilities
of simple conditionals would then equal the sums of the probabilities of
of the possible states of affairs in which they were true. That is, probability
could be equated to probability of truth, which we know is not possible
if the assumptions outlined in Section 2 are satisfied. Lewis’ argument,
the key steps of which are restated below, makes the foregoing heuristic
argument precise.

Using the standard conditional probability notation, p( / ), suppose
this function defined for all pairs of propositions, including conditionals
such that the second member of the pair has positive probability. Suppose
further that this conditional probability function satisfies the usual
axioms, and that probabilities change by conditionalization — after learning
A the unconditional probability of B should equal the original condi-
tional probability p(B/A4). Finally, suppose that probabilities of condi-
tionals are conditional probabilities: p(4=>B)=p(B/4). Assuming that
probabilities change by conditionalization it would then follow that for
any C such that p(4 & C) is positive,

p(4= BIC) = p(Bl4 & C)
This follows in virtue of the fact that p(4 = B/C) should equal the uncon-
ditional probability p(4=>B) after C is learned, and this in turn should
equal p(B/A) after C is learned.

Two special cases of the above equation are those in which C equals B
and in which Cis — B. Assuming that both p(4 & B) and p(4 & — B) are
positive, it would follow from the usual laws that

p(A=B/B)=1
and

(4= B/—B)=0.
By the definition of conditional probability, however, p(4=-B/B)=
2((4=>B) & B)/p(B), from which it would follow since the left side of the
equation equals 1 and p(B) is not zero that

p((4 = B) & B) = p(B).
An analogous argument yields the conclusion that
p((4=B)& —B)=0.
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Finally, by standard laws of probability,

p(A=> B)= p((4 = B) & B)+ p((4 = B) & —B)
=p(B).

In effect, A and B must be statistically independent no matter what 4 and B
are, so long as both p(4 & B) and p(4 & — B) are both positive! It is now
a simple matter to show that the only way this ‘universal independence’
could hold would be for there to be only four possible probability values.

Close examination of Lewis’ argument shows it to rest on four distinct
assumptions, and as in the case of possible reactions to the earlier argu-
ment concerning the possibility of equating probability with probability
of truth in the case of conditionals, reactions to the triviality argument
depend on which of these assumptions is abandoned or modified. The
assumptions are: (1) probabilities of unconditional propositions satisty
the usual (Kolmogorov) axioms, (2) probabilities of simple conditionals
are conditional probabilities, (3) probabilities attach to truth-condi-
tional compounds (in particular conjunctions) of conditionals in such a
way as to satisfy the Kolmogorov axioms, (4) probabilities change by
conditionalization. As noted in Section 2, Lewis himself gives up (2),
van Fraassen gives up (4), and Skyrms proposes modifying (3) by
attaching something like probabilistic ‘values’ to compounds of condi-
tionals which, however, do not satisfy all of the usual laws. Lewis’ argu-
ment shows that the difficulty in attaching probabilities to compounds of
conditionals arises with almost the simplest of such compounds, namely
those of the forms p((4= B) & B) and p((4=>B) & — B), which the usual
laws of probability would require to sum to p(4=>B) but which would
apparently entail that p(4=>B) should equal p(B). The author’s very
tentative opinion on the ‘right way out’ of the triviality argument is that
we should regard the inapplicability of probability to compounds of condi-
tionals as a fundamental limitation of probability, on a par with the in-
applicability of truth to simple conditionals. What is needed at the
present stage is less mathematical theorizing than close examination of
the phenomena of inference involving these problematic constructions,
where it is conceivable that an adequate theory will ultimately require
just as radical a departure from the probabilistic ‘conceptual scheme’ as
this scheme is itself radically different from the orthodox truth-conditional
viewpoint.
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Even granting the difficulties of applying probabilities directly to
compounds of conditionals, it is still possible to learn something about
inference patterns involving these constructions by considering possible
probabilities of their ‘probabilistic components’ - i.e., the components to
which probabilities do apply. Confining attention here only to uniterated
truth-conditional compounds of conditionals (excluding both conditionals
of conditionals and such things as negations of conjunctions of condi-
tionals), there are no special problems with conjunctions since they can be
treated as joint assertions. There are strong forces suggesting the appro-
priateness of treating at least one reading of the denial of 4=>B as the
conditional denial, 4 = — B, some of which will be discussed in the next
section. This leaves disjunction as it might occur in the inference:

Jones will pass logic. Therefore, either if he studies he will
pass logic, or, if he doesn’t study he will pass logic.

‘What can probability tell us about the above inference? At least this
much: the sum of the probabilities of the disjuncts in the conclusion must
be at least as great as the probability of the premise. The satisfaction of
this requirement shows that the inference satisfies at least a necessary
condition for soundness: namely that it should not be possible for the
premise to highly probable while both disjuncts in the conclusion are
highly improbable (which was possible in the ‘switches’ example). The
foregoing also shows that the inference satisfies a generalization of a
necessary and sufficient condition for an inference with a factual disjunc-
tive conclusion to be sound: namely that the premise together with the
denial (or conditional denial) of either disjunct should entail the other
disjunct. Whether we are willing to take this as showing that it is rational
to accept any disjunction of the form (4= B)v (—A=>B) on the basis
of B depends on further considerations which it may possibly lie beyond
the bounds of probability to deal with.

Similar considerations apply to inferences with disjunctions of condi-
tionals among their premises such as the patterns:

(A=B)v(A=C) (4=C)v(-4=C)

A= (BvC) C ’
The first pattern is one such that the inference of the conclusion from
either disjunct of the premise is sound, and if this is taken as it is in the
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factual case as a necessary and sufficient condition for the conclusion to
be entailed by the disjunction, then the inference should be sound. In the
second inference, the conclusion is entailed by neither disjunct of the
premises, and this suggests that the inference should be unsound. The
probabilistic meaning of the foregoing is that the conclusion of the first
inference could not be highly improbable without both disjuncts of the
premise being at best 509, probable, while the conclusion of the second
inference could be highly improbable while a disjunct of its first premise
was almost a certainty. Again, whether we want to take these facts as
establishing the soundness of the first inference pattern and the unsound-
ness of the second will depend on a deeper analysis of the disjunction of
the conditional construction.

9. A PROBABILISTIC CONCEPT OF CONSISTENCY:
DENIJALS AND CONTRARIES OF CONDITIONALS

Though we will be concerned with the concept of consistency in this book
largely for technical reasons, this section will consider a probabilistic
explanation of intuitive inconsistency in relation to conditional proposi-
tions which in turn motivates a definition of probabilistic consistency
whose technical aspects will be explored in the next chapter. There are
fallacies of consistency which arise in applying standard logic in deter-
mining the consistency of sets of propositions involving conditionals, and
which may be regarded as the ‘consistency-theoretic’ counterparts of the
fallacies of material implication. Two very simple examples of proposi-
tion-sets which are held to be consistent in current theory but which are
intuitively inconsistent are:

If it rains the game will be postponed.
If it rains the game won’t be postponed.

and the conditional self-contradiction
If it rains then it won’t rain.11

Truth-conditional semanticists might claim that ordinary logic’s ‘error’ in
holding these proposition-sets to be consistent (assuming it is an error)
stems from its mistaken application of material conditional truth-values
to ‘real’ conditionals, but if we are right in holding that truth-values don’t
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even apply to conditionals, then the explanation of the inconsistency in
these examples is not to be sought in terms of incompatible truth-
conditions according to the usual logical definition of inconsistency, and
what is needed is a reexamination of the concept of consistency itself.

A plausible explanation of the intuitive inconsistency of the proposi-
tions in the examples consists in observing that it would be irrational to
accept all propositions in an inconsistent set at once, because in fact it is
not possible for all propositions of the set to be simultaneously probable.
Our probabilistic analysis supports this intuition since it follows from the
conditional probability representation that the two propositions “if it rains
the game will be postponed” and ““if it rains the game won’t be postponed”
cannot simultaneously be more than 50% probable, and the single propo-
sition “if it rains then it won’t rain” must always have probability 0.
It is true that this ignores problems having to do with the possibility that
the antecedent “it will rain’ might have probability 0, which will be con-
sidered briefly below, but at least we can say that the propositions in
question cannot be simultaneously probable if there is a non-zero
probability of rain. Thus, probabilistic analysis permits a very natural
explanation of intuitive inconsistency in non-truth-conditionals terms,
which links it to what it is not rational to accept.

Building on the foregoing explanation of the intuitive inconsistency of
propositions like “if it rains then it won’t rain”, we may propose a rough
definition of probabilistic consistency as follows: a proposition or set of
propositions is probabilistically consistent if and only if it is possible for
the proposition to be highly probable, or for all propositions of the set
to be highly probable at once. The probabilistic definition can be regarded
as the ‘probabilistic transform’ of the standard truth-conditional defini-
tion of consistency, which arises when the phrase ‘highly probable’ is
substituted throughout for the word ‘true’ in the latter. It is also easily
seen that, so long as there are not ‘too many’ propositions in the set
under consideration, the probabilistic concept reduces to the truth-
conditional one in application to sets of factual propositions. This helps
to explain why truth-conditional tests of consistency yield results in fair
agreement with intuition in application to factual proposition-sets. It
turns out furthermore that when the concept of probabilistic consistency
is given a suitable precization it is linked to the idea of universal probabi-
listic soundness in a very simple way: this is that an inference schema is
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universally probabilistically sound if and only if the premises of the
schema are probabilistically inconsistent with the contrary of the con-
clusion. Thus, something like a generalization of Reductio ad Absurdum
holds for arguments involving conditionals, provided that contraries of
conclusions are treated as denials. Most important technically is the fact
that it is frequently convenient to approach the problem of determining
universal probabilistic soundness by reducing it to one of determining
probabilistic consistency. In fact, this is the approach which will be
followed in the next chapter, where the study of probabilistic consistency
is a preliminary to that of probabilistic soundness.

Let us return briefly to the maiter of justifying the ‘contraries’ reading
of “it is not the case that if 4 then B.” There seem to be several logical
forces supporting this interpretation, among which the following may be
cited. (1) This agrees reasonably well with intuition. (2) The interpretation
allows an attractive escape from the standard logical dilemma of main-
taining that “it is not the case that if 4 then B” entails 4 and ‘not B’.
(3) At least when P (4) is non-zero, P (if 4 then not B) is | minus P (if 4
then B), which is the same relation as that in which the probabilities of
factual propositions and their denials stand. Finally, we have just seen that
this interpretation permits us to generalize the truth-conditional connec-
tion between inconsistency and logical consequence in an elegant manner.
One is almost inclined to say that if denials of conditionals are not their
contraries, then they ought to be.

In spite of, or perhaps because of the foregoing we must be especially
on guard against allowing the desire for theoretical elegance to blind us
to messy realities in the phenomena which the theories are supposed to
describe. At any rate, there is an obvious alternative to the contraries
reading of conditional denial which may well be the more common one
in ordinary discourse. This is the non- justification sense of denial (which
also applies to non-conditional denial) which is often meant when some-
one says “that is not the case” in explicit rejection of another person’s
affirmation. Roughly translated into probabilistic terms, this sense of
“it is not the case that if it rains the game will be postponed” does not
mean that it is highly probable that if it rains the game won’t be postponed
(the ‘contraries’ reading) but rather that it is not highly probable that if
it rains the game will be postponed. Of course, if the ““it is not the case
that” locution really has the two clearly distinguishable senses we have
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suggested, we might argue that all that is needed is disambiguation in
particular contexts so that we know just how reasoning involving this
form of denial is to be evaluated.

Two points are worth making about the non-justification sense of
denial in application to conditionals. First, unlike the contraries reading
which can be expressed in our ‘object language’ formalism, there is no way
of expressing the non-justification sense of denial within this formalism.
This is because we have no operation which carries formulas into ‘non-
justification denials® which have the property that the original formula is
highly probable if and only if its non-justification denial is not highly
probable. Whether or not it would be possible to enrich our formalism in
such a way as to include symbolizations of non-justification denials
without at the same time running up against difficulties like those shown
in the triviality results is an open question. The second point is that the
non-justification sense of denial is closely related to the alternative
reading of conditional disjunction mentioned in the last section, which
was, roughly, that “either if 4 then B or if 4 then C” can be read as “one
of the two conditionals is highly probable” (though it may not be known
which). The alternative readings of both denial and disjunction are ex-
pressed ‘metalinguistically’ as sentential compounds of statements about
the probabilities of object language expressions which have no object
language counterparts.

Finally, honesty compels us to acknowledge the inconclusiveness of
much of what we have said both about inconsistency and denial in
application to conditionals, which arises from our neglect of the possibili-
ty that the antecedents of the conditionals involved may have zero
probability and we have no theory which applies to that case. Are we
really entitled to say that “if 4 then B” and ““if 4 then not B” cannot be
simultaneously probable if we don’t know what probabilities these
propositions should have in case P(4) is 0? As a matter of fact, in my
earlier articles [1] and [2] I arbitrarily stipulated that if p(4)=0 then
both p(4 =>B) and p(4= —B) equal 1, from which it would follow that
the contrary 4=> — B could not be a ‘true’ denial of 4=> B since in fact
the two would be probabilistically consistent. Lacking a satisfactory
theory of the zero antecedent probability case, all that can be argued is
that results which hold true of conditionals when their antecedents don’t
have probability zero constitute prima facie evidence for their validity
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in general, although we must always be prepared to find that our sup-
posed generalities admit exceptions in the zero antecedent case. The same
holds true with regard to findings about probabilistic soundness, for in-
stance that the Narrowed Hypothetical Syllogism schema is universally
sound. At best we will be able to demonstrate that when the antecedents
of “if 4 then B” and “if 4 and B then C” have non-zero probabilities
and both conditionals are highly probable, then “if 4 then C”’ must be
highly probable, and the question of what holds when a conditional
antecedent has zero probability must be left open. What these remarks
suggest is the desirability of serious investigation of the zero-antecedent
case, pending which all conclusions concerning it must be regarded as
tentative.

NOTES

! Note the explicit temporal aspect of the situation described, where one “premise’ was
known prior to the second’s being learned. Temporal aspects of reasoning will not be
considered in Chapters 1-II1, but will be taken up in Chapter IV, especially in IV.9 and
1v.10.

2 Entropic uncertainty (see, e.g. Khinchin [35]) will be only occasionally relevant to
the concerns of this book (for instance as it can be used to describe the effects of
information-acquisition and its ‘inverse’, probability mixing, as in Section 2), and this
type of uncertainty is obviously very different from probability of falsity. In fact,
maximum probability of falsity entails minimum entropic uncertainty.

3 Brian Ellis [17] and |18] bas also mdependently developed a probabilistic theory of
the logic of conditionals which in many respects parallels the present theory. A funda-
mental difference between Ellis’ approach and the present one is that he treats probabil-
ity as a ‘concept of truth’. Limitations of space preclude a detailed comparison with
the present theory.

4 Probably the most radical implication of the present approach is that we are no longer
able to give a uniform ‘semantics’ for arbitrary iterations of compounding by condi-
tionalization, or of forming other sentential compounds with conditional constituents
(see Section 8, where these matters are discussed in some detail). Lewis [40] has taken
this implication in particular as showing that the present approach makes too radical a
departure from orthodox theory.

© We will attempt so far as possible in this work to sidestep problems having to do
with defining p(A4= B) when p(4) equals 0. In earlier papers [1] and [2] T made a con-
ventional stipulation that p(4=B)=1 when p(4)=0, but here we have preferred to
leave the ‘zero antecedent probability case’ an open problem, and have tried to indi-
cate to what extent we may expect further developments in the probabilistic logic of
conditionals to depend on that special case.

¢ The argument of this paragraph can be made entirely rigorous so far as it applies
to the theory formulated in [1] and [2], where p(A=-B) is defined to be 1 when p(4) is 0.
In this case p(A=B) is always a function of p(A4) and p(A & B), and the argument
shows that this would entail that r (4= B) should be a function of ¢ (4) and t (4 & B).
In this case a ‘triviality argument’ paralleling the one immediately following would
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show that for any A4 and probability function p, either p(4)=0 or p(4)=1: ie., the
only possible probability values would be truth values.

7 There is an exception in the case of the self-contradictory (4 & —A), or more gener-
ally any combination 4 & B where A4 and B are represented as disjoint. These are of
course propositions with probability 0.

8 Zoltan Domotor in private conversation has suggested dealing with the zero antece-
dent probability problem by representing probabilities in a non-Archimedean ordered
vector space (which would allow some probabilities to be ‘incomparably small’ with
respect to others). The details of this intriguing suggestion remain to be worked out.
9 We will be able to make only incidental remarks in this work about ‘conditional
related’ connectives like ‘even if’, ‘only if’, and ‘unless’. The most natural reading of
‘A, even if B’ is as a conjunction, “‘A, and if B then A”". Thus, ‘even if” includes “if*, but
is much stronger. On the truth-conaitional analysis, “A, even if B” comes out equiva-
lent to A4, but this depends on the material conditional fallacy that A4 entails “if B then
A”. Note that our probabilistic ‘semantics’ does not allow us to attach a probability
to even-if constructions, since these are conjunctions with conditional conjuncts, which
we will show in Section 8 to involve difficulties for probability.

10 Qnes first reaction to this example is that it is a special instance of the fallacy of
material implication to infer —A= B from A. That is, one is apt to interpret a speaker
who makes an assertion of the form “if it is the case that if A then B, then B” as saying
no more than 4. However, there are reasons for thinking the compound in question is
more nearly equivalent to 4V B, in which case the fallacy is more complicated.

11 The intuitive inconsistency of the conditionals 4=B and A=—B is assumed in
Lewis Carroll’s intriguing ‘barbershop paradox’ [14] (not to be confused with the ‘para-
dox’ of the barber who shaves all men in town who don’t shave themselves). Assuming
our probabilistic interpretation of conditionals, the paradox is not resolved by pointing
out that A=-B and A > — B are not inconsistent, for probabilistically they are inconsis-
tent. However, other features of Carroll’s paradouxical argument, and in particular its
being of the Reductio ad Absurdum form involving counterfactuals, put it beyond the
reach of the present analysis.

CHAPTER II

MATHEMATICAL THEORY OF PROBABILISTIC
CONSISTENCY AND UNIVERSAL
PROBABILISTIC SOUNDNESS

1. INTRODUCTION

This chapter will be primarily concerned with the question: it is possible
for the premises of an inference schema to be highly probable at the same
time that its conclusion is improbable, and more generally, how low a
conclusion probability is compatible with given high premise probabili-
ties for inferences of that pattern? This is the problem of determining
universal probabilistic soundness, but as noted in Section 1.8 it proves
most convenient to approach this problem viz a consideration of proba-
bilistic consistency. In what follows we will give mathematical preciza-
tions of the concepts of universal probabilistic soundness and probabi-
listic consistency which have so far been used in a rough informal way,
and then derive some general results concerning them. As we will be
mainly concerned with mathematical theory in what follows, basic
methodological issues will be left aside for the present. A few preliminary
foundational remarks are in order, however.

How is the concept of a possible probability to be made precise? We will
sidestep this difficult question and simply postulate that any description
of probabilities which is consistent with standard axioms of probability
(principally the so-called Kolmogorov Axioms [36]) describes possible
probabilities. Without getting involved in the probably futile effort to
justify this postulate, we must at least note that in making it we import
into our theory certain idealizations and difficulties. For now we will
ignore the fact that probabilities change as a result of acquiring factual
information. That is, when we ask whether it is possible for premises to be
probable and conclusions improbable we will be trying to find out whether
these probabilities can exist at a single instant of time, and not whether
it is possible for the premises to be highly probable at one time and for
the conclusion to be improbable at another. This might seem to be a
reasonable restriction, but we will see in Chapter IV that certain kinds of
deductive phenomena cannot be properly understood unless the fact
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that new premises represent new information (which may reflect back
on previously arrived at conclusions) is taken into account. In particular,
certain patterns of inference with two or more premises like Modus
Tollens which ‘look perfectly sound’ when probability change is ignored
prove to have exceptions when it is taken account of.

A second idealization in standard theory is implicit in its assumption
that when a factual proposition is probable then any of its logical con-
sequences must be at least as probable. In effect, it is being assumed that
persons ought to be instantly aware of the logical consequences of what-
ever factual propositions they believe. This idealization is unfortunate in
applications of probability which are designed to throw light on processes
of deductive reasoning, but there simply doesn’t exist a theory which
takes into account ‘logical myopia’ and which is applicable to the ques-
tions which concern us.* Therefore we are stuck for now with the idealiza-
tion, and we must keep in mind that when and if theoreies are evolved
which avoid the idealization, some of our present results may be brought
into question.

Also, we must mention again the problem of conditionals whose ante-
cedents have probability 0. We sidestep the problem of dealing with them
by banishing from our language all conditionals whose antecedents
necessarily have zero probability (logically false antecedents) and by
excluding from consideration possible probability functions which assign
zero probability to the antecedent of any conditional involved, when we
seek to determine the universal probabilistic soundness of a particular
inference schema. In effect, what we determine is not absolute probabilistic
soundness, but rather probabilistic soundness relative the particular
soundness test we employ (which avoids considering probability func-
tions attaching zero probabilities to the antecedents of conditionals).
Thus relative probabilistic soundness becomes a necessary but not neces-
sarily a sufficient condition for absolute (universal) probabilistic sound-
ness.

How are ‘highly probable’ and ‘probable’ to be interpreted in the
probablistic soundness requirement that the fact that the premises of an
inference are highly probable should guarantee that the conclusion is
probable? Rather than attempt a direct precization we reformulate the
requirement in what seems at first sight an arbitrary manner into a
certifiability of the conclusion requirement roughly to the effect that it
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should be possible to assure an arbitrarily high degree of certitude in the
conclusion (short of perfect certainty) by making sufficiently sure of the
premises (short of requiring perfect certainty in them). This is made
precise in Section 4, but the point to be made here is that the interest in
the certifiability criterion is not so much in certifiability for its own sake,
but in properties which can be shown to be directly related to it. We are
able to show, for instance, that if inferences fail to satisfy the certifiability
requirement then it is not possible to assure any degree of certainty in
their conclusions, no matter how certain the premises are required to be.
Also we are able to give precise bounds on the degree of possible un-
certainty in a “certifiable conclusion’ as a function of the uncertainties of
the premises. In effect, then, the vague idea of probabilistic soundness
gets replaced by a more precise one, and this in turn is of interest
primarily because it serves as a convenient tool for the study of a variety
of questions relating to probabilistic aspects of deductive reasoning
involving conditionals.

2. PRELIMINARY DEFINITIONS

The first concepts to be defined are syntactical ones, leading to the charac-
terization of formal languages for expressing conditionals. We will work
with sentential variables, which will be capital letters ‘4’, ‘B, etc., possibly
with numeral subscripts, plus the two sentential constants ‘7” and ‘F’
which are to be informally regarded as expressing a logical truth and a
logical falsehood, respectively. Any set of sentential variables together
with ‘T” and ‘F’ generates a factual language, which is the set of all ex-
pressions which can be formed from these symbols either alone or by
arbitrary iterations of the unary connective ‘—’ (negation), or the binary
connectives ‘&’ (conjunction), ‘v’ (disjunction), or ‘>’ (the material
conditional). A factual language is a sublanguage of another (and the
second is an extension of the first) if all formulas of the first are also
formulas of the second; a language is finite if it has a finite number of
atomic formulas. The notions of logical consistency and logical conse-
quence will be assumed to apply to formulas and sets of formulas of a
factual language in the usual way, with the proviso that ‘T” is logically
true and ‘F’ is logically false. We will normally not explicitly specify the
factual language of concern, except in the particular case where it is
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essential that it be finite. Lower case Greek letters will be used as variables
ranging over factual formulas (formulas of a factual language).

Given a factual language %, its conditional extension is defined to be
the set of all formulas of % together with all expressions of the form
¢=>1, where ¢ and y are formulas of % and ¢ is not logically false. The
latter will be called conditional formulas of & (and the terms ‘antecedent’
and ‘consequent’ will be applied in the usual way), the conditional exten-
sion will be called a conditional language, and % will be called its factual
basis. Note that the connective ‘=>" can occur only as the main connective
in a formula (in contrast to the standard sentential connectives), corre-
sponding to the fact that probabilities are not defined for compounds
with conditional constituents. The exclusion of conditionals with logically
false antecedents arises because it would be impossible to assign non-zero
probability to such conditionals. Script capitals ‘o7’ ,*®”, etc., will be used
as variables ranging over both factual and conditional formulas of a con-
ditional language, and capital letters ‘X, ‘Y, etc., will be used as variables
ranging over sets of these formulas.

The following are some further bits of syntactical terminology. Given
a factual formula ¢, its conditionalization is defined to be the formula
T = ¢. Factual formulas are ‘probabilistically equivalent’ to their con-
ditionalizations in a sense to be defined shortly. The material counterpart
of the conditional formula ¢=-y is defined to be the factual formula
¢ > ; it results from replacing the double barred arrow by the material
implication symbol. We will take the material counterpart of a factual
formula to be the formula itself. The material counterpart of a condi-
tional with non-logically true antecedent is never probabilistically
equivalent to it. The contrary of a factual formula is defined to be its
negation, while the contrary of the conditional ¢ =>/ is defined as before
to be the conditional ¢ = —y. If & is either factual or conditional we
will use © ~£/* as the metalinguistic abbreviation for the contrary of 7.
For any set X of such formulas, ~ X will be taken to be the set of contra-
ries of formulas of X.

Now let X be the finite non-empty set of conditional formulas {¢; =y,
«evs @p=>1,}. The quasi-conjunction of the formulas of X is defined to be
the conditional formula

C(X)= (¢1 V...V ¢n): [(¢1 :‘pl)&"' &(¢n:"/fn)]'
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The quasi-conjunction operation is extended to sets X containing factual
formulas by the device of substituting for each factual formula involved
its conditionalization. This operation is easily seen to be commutative,
associative and idempotent up to probabilistic equivalence, and to reduce
to ordinary conjunction in the special case in which all of the formulas
conjoined are factual. In the general case quasi-conjunction is not a ‘true’
conjunction operation since, though every finite set of formulas entails
its quasi-conjunction (in a sense of ‘entails’ still to be defined), the quasi-
conjunction does not entail all formulas of the set. The dual operation
of quasi-disjunction is defined for finite sets X of conditional formulas to be

D(X)= (¢l Vi V ¢n): [(¢l &'//I)V eV (¢n &'//n)]

Again the operation is extended to sets including factual formulas by sub-
stituting the conditionalizations for each factual formula involved. Quasi-
disjunction reduces to ordinary disjunction in application to factual
formulas, but is not a ‘true’ disjunction since the quasi-disjunction of a set
of formulas is not in general entailed (in a sense still to be defined) by all
formulas of the set.

The next series of definitions concerns what might be called the “truth-
conditional semantics’ of factual and conditional languages. Given a
factual language, %, a truth-assignment for % is a function, ¢, mapping
the formulas of % into the numbers 0 (for “falsity’) and 1 (for ‘truth’)
such that ¢ (T)=1 and ¢ (F)=0 (note the henceforth we shall use formu-
las like ‘7" and ‘F’ autonomously), and satisfying the usual laws of sen-
tential combination (in particular, ¢ (¢ =) is 1if and only if either ¢ (¢)=0
or t (Y)=1, so that >’ is interpreted as the material conditional). If the
language is finite, there are only a finite number of distinct truth-assign-
ments for it, and each such assignment, #, can be made to correspond to
a state-description, ¢,, which is a formula of the language, and such that
for any factual formula ¢ of %, E(¢)=1 if and only if ¢ is logically
consistent with ¢,.

Now consider a factual language .#, a truth-assignment ¢ for ., and
a conditional formula ¢=>y in the conditional extension of .£. We will
say that ¢ = is verified under ¢ if ¢ (¢)=¢ (Y)=1, and ¢ ==V is falsified
under ¢ if £(¢)=1 and ¢ (y)=0. ¢p=>y is neither verified nor falsified
under ¢ if ¢ (¢)=0. The notions of verification and falsification are ex-
tended to factual formulas by identifying them with their conditionaliza-
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tions. With this convention, a factual formula ¢ is verified or falsified under
t according as ¢ (¢) is 1 or 0. Observe that while conditional formulas
may be neither verified nor falsified under a truth-assignment, factual
formulas must have one of the two ‘verification values’.

Some important properties of verification and falsification are as
follows. By definition, the conditionalization of a factual formula is veri-
fied or falsified under a truth-assignment according as the formula itself
is. Given a conditional formula ¢ =}, its material counterpart is falsified
under ¢ if and only if it is falsified under ¢, while the material counterpart
is verified under ¢ if and only if the conditional is not falsified (though
it may not be verified either). The contrary of a formula is verified if and
only if the formula is falsified, and is falsified if and only if the formula is
verified. The quasi-conjunction C (X) of a finite set of formulas is verified
under 7 if and only if no member of X is falisfied and af least one is verified
under ¢. C (X)) is falsified under ¢ if and only if at least one member of X
is falsified under . The only case in which C (X) is neither verified nor
falsified under ¢ is that in which no member of X is verified and no
member of X is falsified under . The quasi-disjunction D(X) is verified
under ¢ if and only if at least one member of X is verified under ¢, and
D(X) is falsified under ¢ if and only if no member of X is verified and at
least one member is falsified under 2. The special cases in which C (X) is
verified and in which D(X) is falsified are important. In the former we
shall say that the set X itself is confirmed by t (no member is falsified and
at least one is verified), and in the latter we shall say that X is discon-
firmed by t (no member is verified and at least one is falsified). X is con-
firmable if there exists a truth-assignment confirming it, and is discon-
firmable if there exists a truth-assignment disconfirming it.

Some obvious interconnections among the foregoing notions are the
following. ¢ verifies or falsifies ~ ( ~.2) according as it verifies o (<7 and

~ ( ~&/) are ‘verification equivalent’). Similarly, C ( ~X) is verification

equivalent to ~D(X)and D( ~X)is verification equivalent to ~ C (X).
t confirms X if and only if it disconfirms ~ X, and disconfirms X if and
only if it confirms ~ X.

The final series of preliminary definitions has to do with probability.
Given a factual language %, a probability-assignment for & is a function
p mapping the formulas of .Z into real numbers in the interval from 0 to 1
(inclusive) in such a way as to satisfy the Kolmogorov Axioms: (1) if ¢
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logically entails y then p(¢)< p(¥), and p(T)=1, and (2) if ¢ and y are
logically inconsistent then p(¢ v )= p(¢)+ p (). These axioms ential the
familiar laws of probability, as they are developed in the first chapter of any
elementary probability text, and these laws will be taken for granted here.

Some particular facts to be noted about probability functions are the
following. The first is that truth-assignments for a factual language are
ipso facto probability-assignments for the language, and in fact a probabil-
ity-assignment is a truth assignment if and only if it assigns solely the
‘extreme values’ 0 and 1 to formulas of the language. Second, if the
language is finite so that each truth-assignment ¢ is associated with a
formula ¢, of the language in the way previously described (any formula
¢ is consistent with ¢, if and only if # ($)=1), then the probability p(¢)
can be identified with p(¢,), and for any formula ¢,

(68] 2(9) = p(t) t:() +--+ p(1,) (),

where 2,,..., t, are all of the truth-assignments for the language. Equation
(1) can be interpreted as saying that the probability of any proposition ¢
is equal to the sum of the probabilities of the states of affairs (truth-
assignments) ¢, in which it would be true (i.e., in which #;,(¢) =1). Finally,
if p is a probability function for any factual language ., and . is a sub-
language of another factual language %, then there is a probability
function p’ for £’ such that p’(¢)=p(¢) for all ¢ in 2.

Given a probability function p for a factual language .2, and a formula
¢ of 2, the uncertainty of ¢ relative to p is the number u,(¢)=p(—¢)=
1— p(¢). The uncertainty of ¢ measures the degree to which ¢ is regarded
as unlikely. Two easily demonstrable facts about uncertainty as here
characterized are that if ¢ entails ¥ then u,(}) is no greater than u,(¢),
and that u,(¢; & ... & ¢,) is no greater than the sum of the uncertainties
u,(¢;) for i=1, ..., n. Combined, the foregoing imply that if a factual
formula is a logical consequence of a finite set of such formulas, then the
uncertainty of the consequence is no greater than the sum of the un-
certainties of the premises. A generalization of this will be seen to hold in
the case of conditionals, which we consider next.

Given a factual language %, a probability-assignment for it, p, and a
conditional formula ¢=> of its conditional extension, p will be said to
be proper for ¢ = if p(¢) is not 0. If X is a set of factual and/or condi-
tional formulas of the conditional extension, then p is proper for X if it
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is proper for all conditional formulas of X. It is seldom the case that
truth-assignments, considered as probability-assignments, are proper for
sets X including conditionals, but it is trivial that if X is finite there exist
proper probability-assignments for X (this depends critically on the fact
that conditional formulas with logically false antecedents are excluded).

Now let £ be a factual language, p be a probability-assignment for .2,
and let ¢ =y be a conditional formula of the conditional extension of ¥
such that p is proper for ¢=>v. The conditional probability of o=y
relative to p is then defined to be the ratio p(¢ & ¥)/p(¢). The uncertainty
of ¢=>y relative to p is defined as before to be 1— p(¢p=-). Various
properties of conditional probability and uncertainty which we will have
occasion to use include the following. Suppose ¢ is a factual formula of
£, o is a conditional formula of its conditional extension, and X is a
finite set of factual and/or conditional formulas such that p is proper for
 and X. (1) p(¢)= P (T = ¢). (2) if ¢ is the material counterpart of o/
then p()<p($). (3) p( ~#)=1-p(/). (4) p( ~D(X))=p(C( ~X))
and p( ~C (X))=p(D( ~X)). (5) p(D(X)) is no greater the sum of the
probabilities p(%) for & in X. (6) u,(C(X))is no greater than the sum of the
uncertainties u,(#) for % in X. Conditions (1) and (4) entail that ¢ and
T=¢, ~D(X) and C(~X), and ~C(X) and D(~X) are probabilisti-
cally equivalent in the sense that each member of any of the pairs must be
equal in probability to the other member of the pair, relative to any
probability-assignment. We have already noted that these pairs are also
verification-equivalent in the sense that one member of the pair must be
verified or falsified according as the other is by any truth-assignment, and
this is a special case of the general rule that if two formulas are verification-
equivalent they are also probabilistically equivalent.

The general rule just stated follows immediately from the following
generalization of Equation (1). If  is finite, p is a probability-assignment
for £, and p is proper for the conditional formula ¢=y of the condi-
tional extension of %, then

P(t) (& Y)+-+p(t) 1, (9 &)
p(t:) 11 (9) +-+ (%) 1t ($)
where ty,..., t, are the truth-assignments for .%. Informally interpreted,

equation (2) says that the probability of a conditional ¢p=) is equal to the
probability of its being verified (in which case #;(¢ & ¥)=1) divided by

@  rie=w-=
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the probability of its being either verified or falsified (this being the case
where #;(¢)=1). This is a generalization of the ‘probability equals
probability of truth’ equation which reduces to the latter in case the
formula involved is factual, since in the latter case the formula has
probability 1 of being either verified or falsified. It will be seen that this
generalization is not only technically useful, but appears to have a signifi-
cance for the meaning of conditional probability, which will emerge in
Chapter III.

3. PROBABILISTIC CONSISTENCY

The following definition provides a precise if somewhat arbitrary charac-
terization of the informal idea of probabilistic consistency discussed in
Section 1.9.

DEFINITION 1. Let Z be a factual language and let X be a set of
formulas of its conditional extension. X is probabilistically-consistent
(abbr. ‘p-consistent’) if and only if for all real numbers & >0, there exist
probability-assignments p for £ which are proper for X such that
p(£)=1—e¢ for all & in X.

In words, a set of formulas is probabilistically consistent if it is possible
for all formulas of the set to be as close to certain asdesired, short of being
perfectly certain. We might have imposed a still stronger requirement for
a set X to be probabilistically consistent: namely that there be some
probability-assignment such that p(s/)=1 for all & in X, hence that all
members of X be absolutely certain. This requirement would be intuitively
too strong, however, since imposing it would mean that the two formulas
‘A’ and ‘B=>—A4’ (example: ‘the sun will rise tomorrow’ and ‘if the
universe ends today the sun will not rise tomorrow’) would not be proba-
bilistically consistent in this sense. The requirement that it should be
possible for all members of a probabilistically consistent set to be arbi-
trarily close to complete certainty might in fact seem too strong itself.
However we will see in a moment that where a set does not satisfy this re-
quirement there are fixed upper limits as to how probable all of its
members can be.

An important fact to note about the definition of p-consistency is that
it does not satisfy the compactness condition, and therefore we cannot
expect the concept of probabilistic soundness which is in a sense ‘based
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on it’ to satisfy all of the usual laws for deduction relations. An example
of an infinite set of formulas which is p-inconsistent, though no finite sub-
set of it is p-inconsistent, is the following: the set of all formulas
“(A;v Aipq)=> (A;rg & —A;) where “4;’, ‘4,’, ...are atomic formulas of
an infinite language. It will follow from Theorem 1.2 below that any
finite subset of the above set is p-consistent, but it is easily seen that if
each formula of the above set had probability at least 1 —e, then for each
i, p(4;) would be no greater than e/(1—¢) times p(4;,,), which would
entail that p(4,) would have to be zero if there were an infinite number
of atomic formulas. But this would mean that the probability function p
would not be proper for the set of all of these formulas.

The foregoing example is illustrative of the fact that our imposition of
the requirement that the probability-assignments to be dealt with must
be proper has some unexpected and non-trivial implications where we
consider infinite sets of formulas and their probabilistic consistency. For
this reason we will henceforth restrict ourselves to considering just finite
sets of formulas and inferences with only finite numbers of premises.

Theorem 1 below gives necessary and sufficient conditions for finite sets
of formulas to be probabilistically consistent, and in fact provides us with a
decision procedure for determining probabilistic consistency for such sets.

THEOREM 1. Let % be a factual language, let p be a probability-assign-
ment for £, and let X be a finite set of formulas of the conditional exten-
sion of & such that p is proper for X.

1.1. If there exists a non-empty subset of X which is not confirm-
able, then the sum of the uncertainties u,() for & in X is at
least 1, and hence X is not p-consistent.

1.2. If every non-empty subset of X is confirmable then X is
p-consistent.

Proof of 1.1. Suppose that some non-empty subset ¥ of X is not confirm-
able. We have seen (Section 2) that this is equivalent to supposing that the
quasi-conjunction C (Y) is not verifiable, and this entails by Equation (2)
that p(C(Y))=0, hence u,(C(Y))=1. It is also the case that the un-
certainty of a quasi-conjunction is less than or equal to the sum of the un-
certainties of its quasi-conjuncts, hence the sum of the uncertainties u, ()
for o/ in Y is at least 1. A fortiori the sum for &/ in X is at least 1.
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Proof of 1.2. Suppose that every non-empty subset ¥ of X is confirmable:
i.e., there exists a truth-assignment ¢, for & which does not falsify any
formula of Y, and verifies at least one. It is possible to construct a finite
‘nested decreasing sequence’ of non-empty subsets of X, namely X, ..., X,
(where X; =X), and associated sequence of truth-assignments xps-nos Bx,
confirming X, ..., X,, respectively, such that: (1) X;,; is the proper
subset of X; consisting of all formulas of the latter not verified by #x,, for
i=1,...,n—1, and (2) tx, verifies all formulas of X,. That X;,, is always
a proper subset of X; depends on the fact that ty, confirms X, hence veri-
fies at least one member of it. This series of subsets X; and confirming
truth-assignments ty, is easily seen to satisfy the further conditions that:
(1) every o in X either belongs to X, or to a unique ¥; defined to be the
set of all 4 in X; which are not in X4, for i=1,..., n—1, (2) t, verifies
all formulas in Y; and neither verifies nor falsifies any formulas in
Y.y Yiog, for i=1,..., n—1, and (3) #x, verifies all formulas in X, and
neither verifies nor falsifies any formula of ¥3,... ¥,_;.

Now, as we can assume without loss of generality that we are dealing
with a finite language, we can use Equation (1) to define a probability-
assignment for the language by assigning probability values to its pos-
sible truth-assignments. We do this in the following way. For i =1,...,
n—1, we define

p(tx) =& (1 e),

p(ty,)=¢"".

For any truth-assignment not among the £y, we set its probability equal to
0. It follows immediately from Equation (1), then, that for any factual
formula ¢ of the language,

()= p(tx,)tx, () +-- + p(tx,) 15, (9)-

It must now be shown that, given the foregoing definition of the
probability-assignment p, p(=7)>1—e for all & in X. We can assume with-
out loss of generality that .« is conditional, say & = ¢ =, since otherwise
&/ can be replaced by its conditionalization. It follows from Equation (2)

then that
p(tx) tx, (@ &)+ + p(tx,) 1, (¢ &)
p(tx,) tx, (9) +--+ p(tx,) tx,(9) )

and set

p()=
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</ must belong to a unique Y; or to X,, and this means that #, (d)=
tx,(¢ &Y)=0 for j=1,...,i—1, while t5(p)=1x(¢ &V)=1 (since ty,
verifies all formulas of Y;, or verifies all formulas of X; if i =n). It follows
that all terms in the sums in the numerator and denominator of the above
ratio for j=1,...,7—1 are 0, while p(tx,)tx:i(¢ & ¥)=p(ty)tx ()=
p(ty,), and the latter equals &'~1(1 —e¢) if i<n, or "~ if i =n. The latter
trivially implies that

d M (1—¢)
) > 4= : =1-
P() Tl —e)+d(l—g)+te& ! 1-¢,
if i<n, and
p()=1

if i=n. In either case, therefore, p(&/)>1—e, hence all members of X
can be assigned probabilities arbitrarily close to 1, and the theorem is
proved.

Theorem 1 simultaneously provides a decision procedure for deter-
mining probabilistic consistency and tells us how high the probabilities
of formulas in probabilistically inconsistent sets can be. To determine
whether a set has a non-empty subset which is not confirmable can be
done mechanically since this is a matter of finding out whether there
exists a truth-assignment not falsifying any member of the subset and
verifying at least one. Three examples of probabilistically inconsistent
sets are: (1) the set whose only member is ‘4 => —4°, (2) the set whose
members are ‘A=>B’ and ‘4= —B’, and (3) the three-member set con-
taining the formulas ‘4 = B’, (4 & B)=>C’ and ‘4=~ C". It is obvious in
the first case that no truth-assignment can confirm ‘4 = — 4’, since this
would require that both ‘4’ and ‘— 4’ be verified. Similarly the two-
member set containing ‘4 => B> and ‘4 = — B’ could not be confirmed since
any truth-assignment verifying one member would have to make ‘4’ true,
hence would falsify the other member.

Theorem 1.1 tells us that in each of the probabilistically inconsistent
sets above, the sum of the uncertainties of the formulas of the set (relative
to any proper probability assignment) must be at least 1. This means that
in the first case, the uncertainty u,(4= —A) must equal 1, hence the
probability p(4= —A) must equal 0. In the second case the two un-
certainties u, (4=>B) and u,(4 = — B) cannot be simultaneously greater
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than 1/2. In general, given an n-member p-inconsistent set of formulas,
the fact that their uncertainties must total at least 1 means that not all
members of the set can have probabilities greater than 1 —1/n. Note that
if n is large, however, the probabilities of all members of a probabilistically
inconsistent set can be quite high, though not ‘arbitrarily high’.

Examples of sets which are probabilistically consistent, since all non-
empty subsets of them are confirmable, are: (1) the two-member set con-
taining ‘Av B’ and ‘4= —B’, and (2) the three-member set containing
‘A=>B’, ‘B=>C’ and ‘4= — C". In the first case, for instance, the truth-
assignment ¢ such that ¢(4)=0 and #(B)=1 confirms the whole set since
it verifies ‘4 v B’ and neither verifies nor falsifies ‘4 => —B’. The same
truth-assignment confirms the one member subset containing ‘4 v B’, and
the truth-assignment #” such that +'(4)=1 and ¢'(B)=0 confirms the one-
member subset containing ‘4=>—B’. In the case of set (2), the truth-
assignment ¢ such that #(4)=0 while #(B)=¢(C)=1 confirms the entire
set, and it is easy to find truth-assignments confirming the non-empty
proper subsets.

The following theorem lists some further properties of probabilistic
consistency which have intuitive significance. No proofs will be given
since the parts of the theorem follow almost trivially from basic defini-
tions plus Theorem 1.

THEOREM 2. Let &/ be a factual or conditional formula, let X be a
finite set of such formulas, and let X’ be the set of material counterparts of
formulas in X.

2.1. If X’ is logically inconsistent than X is probabilistically in-
consistent.
2.2. If X is probabilistically inconsistent and contains at least one

factual formula and no proper subset of X is probabilistically
. inconsistent, then X" is logically inconsistent.
23. If X is probabilistically consistent then either X U {s/}
X u{ ~«} is probabilistically consistent.

Part 2.1 tells us that the logical inconsistency of the material counter-
parts is sufficient for the originals to be probabilistically inconsistent. For
instance, the three formulas ‘4’, ‘4=-B’ and ‘— B’ have logically in-
consistent material counterparts, hence they are probabilistically incon-
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sistent (by Theorem 1.1 they cannot all have probabilities in excess of
2/3). Logical inconsistency is not necessary for probabilistic inconsistency
since we already know that the two formulas ‘4=>B’ and ‘A= — B’ are
probabilistically inconsistent, though their material counterparts are
obviously logically consistent.

Part 2.2 gives an important special case in which logical inconsistency
(of the material counterparts) is necessary for a set X to be probabilistical-
ly consistent. This is that in which X contains a factual formula and none
of its proper subsets is probabilistically inconsistent. An example is the
two-member set containing ‘4 v B’ and ‘4 = — B’, whose first member is
factual, and were it is obvious that no proper subset of the set is proba-
bilistically inconsistent. Knowing that the material counterparts of the
formulas of the set are logically consistent then insures that the set itself
is probabilistically consistent. Part 2.2 is illustrative of a striking differ-
ence between the probabilistic logic of sets of purely conditional for-
mulas and that of sets of mixed conditional and factual formulas. In the
purely conditional case, as we have seen, ‘truth conditional inconsis-
tency’ (i.e., truth-conditional inconsistency of the material counterparts)
is sufficient but not necessary for probabilistic consistency. In the case
of mixed sets, if the subset of purely conditional formulas is probabilisti-
cally consistent, then the entire set is probabilistically consistent if and
only if it is ‘truth-conditionally’ so. We will see related differences be-
tween the logic of mixed as against pure sets of conditional proposi-
tions brought out in Theorems 3.4 and 3.7, which concern probabilistic
entailment.

Part 2.3 is cited here to illustrate the fact that the operation of forming
the contrary stands to probabilistic inconsistency much as ordinary
negation stands to truth-conditional inconsistency.

4. PROBABILISTIC ENTAILMENT

As already noted, we choose not to give a direct precization of the intui-
tive probabilistic soundness requirement, but rather to consider a
formalization of the certifiability of the conclusion requirement that it
must be possible to assure an arbitrarily high degree of certitude in the
conclusion of an inference by making sufficiently sure of the premises.
This requirement is formulated in Definition 2 below:
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DEFINITION 2. Let # be a factual language, let & be a formula of its
conditional extension, and let X be a set of such formulas. Then X
probabilistically entails s/ (abbr. ‘X p-entails 2’) if for all ¢ >0 there
exists & >0 such that for all probability-assignments p for % which are
proper for X and &, if p(%)=>1—46 for all Z in X, then p(£)>1—e.

The use of the term ‘entailment’ applying to the probabilistic-entail-
ment relation just defined must be justified by showing that this relation
satisfies at least some of the laws which entailment or deduction relations
are ordinarily assumed to satisfy (see, e.g., Henkin and Montague [307).
As a matter of fact this relation does not satisfy all of these laws, since
it does not satisfy the compactness principal (our earlier example of an in-
finite set which is p-inconsistent though no finite subset is one in which the
infinite set p-entails ‘F* while no finite subset does). It can be shown that
p-entailment does satisfy the two most essential laws for deduction rela-
tions among finite sets of premises, and in fact any conclusion p-entailed
by a finite set of premises can be derived from them within a natural de-
duction format using rather simple rules of inference. Before turning to
questions of deducibility, though, we list some elementary properties of
the p-entailment relation, and in particular ones which implicitly provide
us with a decision procedure for determining when a conclusion is p-
entailed by a finite set of premises. No proofs will be given for the parts
of the following theorem, since each part is an easy consequence of basic
definitions plus previous theorems.

THEOREM 3. Let % be a factual language, let &/ and £ be formulas of
its conditional extension, and let X be a finite set of such formulas. Let p
be a probability-assignment for % which is proper for &/, & and X. Let
&/’ be the material counterpart of o7 and let X’ be the set of all material
counterparts of formulas in X.

3.1. If X p-entails &7 then u, (/) is no greater than the sum of the
uncertainties u,(%) for # in X.

3.2. If X does not p-entail & then for all ¢ >0 there exists a
probability-assignment ¢ for £ which is proper for &7 and X
such that ¢(%)>1—e for all Z in X, but g(=) <e.

3.3, If X is p-consistent and p-entails & then X’ logically entails
o’
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34. If X" logically entails o¢’ and & is factual, then X p-entails <.

3.5 X p-entails o if and only if X U{ ~&} is p-inconsistent; X
p-entails all formulas if and only if it is p-inconsistent.

3.6. If X U {%} and X U { ~%} both p-entail & then X p-entails /.

3.7. If o7 is conditional, X contains at least one factual formula,
and X p-entails o/ but no proper subset of X p-entails <7, then
X p-entails both the antecedent and consequent of <.

3.8 If ‘4’ is a sentential variable not occurring in X and ¢ is a
factual formula, then X p-entails 4 = ¢ if and only if either X
is p-inconsistent or 4> ¢ is logically true.

A few comments may help to bring out the significance of the different
parts of Theorem 3. 3.1 generalizes the rule stated in Section I.1 that if a
factual formula is a logical consequence of a finite set of factual formulas
then the uncertainty of the conclusion is no greater than the sum of the
uncertainties of the premises. Note that in going over to conditionals,
though, we speak of p-entailment rather than logical consequence. 3.2
shows that where a conclusion is not p-entailed, arbitrarily high probabil-
ities for the premises are compatible with arbitrarily low probabilities
for the conclusion.

3.3 and 3.4 are intended to bring out connections between p-entailment
relations among conditionals and logical consequence relations among
their material counterparts. Where we are dealing with p-conmsistent
premises, then the fact that the conclusion (more exactly, its material
counterpart) is logically implied is at least a necessary condition for it to
be p-entailed. That logical entailment is not sufficient for p-entailment is
obvious, since the factual formula 4> B logically entails the material
counterpart of 4=>B (which is 4> B), but does not p-entail 4=>B itself.
Where the conclusion is itself factual, however, then 3.4 says that being a
logical consequence of premises is also a sufficient condition for a con-
clusion to be p-entailed by them. Thus, where rules of inference which are
sound truth-conditionally lead from conditional or unconditional pre-
mises to factual conclusions (as do Modus Ponens and Modus Tollens)
their truth-conditional soundness does assure their probabilistic sound-
ness.2

Part 3.5 is most important, since it yields an immediate decision proce-
dure for determining whether a conclusion & is p-entailed by a finite set

UNIVERSAL PROBABILISTIC SOUNDNESS 59

of premises, X : namely by determining whether the set of X together
with the contrary of & is p-consistent. For example, to determine whether
the factual formula 4 > B p-entails the conditional A=> B, it is necessary
to determine whether the two formulas 4> B and A=> — B are p-con-
sistent. The truth-assignment ¢ such that #(4)=¢(B)=0 verifies the first
formula and neither verifies nor falsifies the second, hence the entire set
is confirmable, hence the set is p-consistent and so 4 > B does not p-entail
A=>B. An example of an inference which is p-sound (the premises
p-entail the conclusion) is to infer 4=>C from the premises 4=>B and
(4 & B)=>C (this is the Narrowed Hypothetical Syllogism introduced in
Section 1.5). This is shown to be p-sound since the set containing the
three formulas 4= B, (4 & B)=>C and 4= — C is not confirmable.

Parts 3.5 and 3.6 together show that p-entailment satisfies certain laws
of “indirect inference’ (reasoning from assumptions which are ultimately
‘discharged’ in the course of the reasoning) which are analogous to
familiar principals of indirect truth-conditional inference. 3.5, for
instance, is a kind of generalization of reductio ad absurdum inference,
since it says that a conclusion is p-entailed if the contrary would be in-
consistent (i.e., p-inconsistent) with given premises. 3.6 is a generalization
of the ‘proof by cases’ pattern of indirect reasoning. Not all rules of indi-
rect truth-conditional reasoning generalize neatly to probabilistic coun-
terparts, the familiar conditionalization rule being an example: i.e., that
if Y follows from X plus an assumption ¢ then ¢=y follows from X
alone. Indeed, if this rule were valid, then as we have seen the conditional
A=>B could be derived from the material conditional, and the ordinary
conditional could be represented as a material conditional for the pur-
poses of determining the soundness of arguments involving it.

Part 3.7 is like part 2 of Theorem 2 in bringing out a striking difference
between the logic of purely conditional propositions and that of mixed
conditional and factual propositions. What 3.7 says in effect is that if a
conditional conclusion is p-entailed by premises including factual propo-
sitions, and the inference depends on its factual premises (the conclusion
doesn’t follow if the factual premises are removed), then in fact not only
does the conditional follow, but its antecedent and consequent as well.
An illustration is the inference of A =>B from the two premises 4 and B,
which is easily seen to be p-sound, but where in fact it would be very odd
to deduce the conditional since the much stronger that conclusion both
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the antecedent and consequent can be asserted follows. Thus, it would
appear that in the normal case in which conditionals are inferred, if the
inference is probabilistically sound at all, it cannot depend on factual
premises. This raises interesting logical questions as to just what does
justify reasoning which issues in conditional conclusions, assuming it
must ultimately be grounded in factual ‘data’, but these are matters which
cannot be pursued further here.

Part 3.8 is cited here to show that probabilistic considerations lend
some support to the vague but not uncommon intuition that one should
not be able to infer a conditional proposition about what would happen
if a state of affairs, 4, arose, from premises which do not ‘refer’ to that
state of affairs. Students are apt to suggest that this is what is wrong in
the “fallacy’ of material implication, to infer ‘if 4 then B’ from B, as in
the example ‘Jones will win; therefore, if it rained yesterday, Jones will
win’. Now we see that if these inferences are symbolizable in such a way
that the antecedent of the concluding conditional is represented by a sen-
tential variable not occurring among the premises, they can only be
probabilistically sound if either the premises are p-inconsistent (where
they p-entail anything), or the conclusion is logically true (so that any-
thing p-entails it).

The final series of theorems primarily concern deducibility relations
among conditionals. Part 4.2, asserting that p-entailed conclusions can
always be deduced following certain rules of inference, is not as precisely
stated as might be, since we have not spelled out precisely what it means
to say that a conclusion within our language is derivable by given rules
from premises. This notion can be defined in the usual way, however, and
we shall simply take it for granted here.

THEOREM 4. Let .2 be a factual language, let ¢, /, and # be formulas
of £, let o/ be a formula of the conditional extension of %, and let X and
Y be finite sets of such formulas.

4.1. X p-entails all of its members, and if X p-entails all members
of Y and Y p-entails &7, then X p-entails <.

4.2, X p-entails & if and only if &/ is derivable from X using the
following seven rules of inference:
R1. T'=¢ and ¢ are interderivable.
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R2. If ¢ is logically consistent and ¢ and ¥ are logically
equivalent then ¢ =7 can be derived from / =>7.

R3. If ¢ is logically consistent and logically entails 1, then
¢ =>y can be derived from the empty set.

R4. (¢ viy)=>n can be derived from ¢ = # and y=>7.

RS5. If ¢ &y is logically consistent then (¢ & Y)=># can be
derived from ¢=>7 and ¢=>1).

R6. ¢=>1 can be derived from ¢=>y and (¢ & ¥)=7.

R7. If ¢ is logically consistent but ¢ & V is logically incon-
sistent, then anything can be derived from ¢ = y.

4.3. Assumethat 4,, ..., 4, and B are distinct sentential variables of
£Z. There is no set X of formulas of the conditional extension
of # with less than » members which is p-equivalent to the set

{4; =B, ..., 4,= B}

in the sense that all members of X are p-entailed by this set
and X p-entails all members of this set.

Proof of 4.1. That X p-entails all of its own members is trivial. To prove
that if X p-entails all members of ¥ and ¥ p-entails o7, then X p-entails <,
we introduce the following notion of yielding. A set Z yields o if: (1)
every truth-assignment confirming Z verifies ., and (2) every truth-
assignment falsifying </ falsifies at least one member of Z. It is easy to
show that a set Z p-entails & if and only if either Z is p-inconsistent or
some subset of Z (possibly empty) yields . The only case in which &/
is yielded by an empty set is that in which & is a ‘p-tautology’; i.e., no
truth-assignment falsifies 7.

Now suppose that X p-entails all members of ¥ and Y p-entails <. If X
is p-inconsistent, obviously X p-entails «. Suppose X is not p-inconsistent.
Then for every & in Y there is a subset X, of X which yields %. It will be
shown first that ¥ must itself be p-consistent, since every non-empty sub-
set of it, Z, must be confirmable. Let X, be the union of the sets X, for %
in Z. If X is empty, this can only arise if all members of Z are p-tautolo-
gies, hence it is trivial that Z is confirmable. If X is non-empty then it is
confirmable; say truth-assignment ¢ confirms Xj. It is easy to see in this
case that ¢ confirms Z itself, and hence Z is confirmable. Therefore every
non-empty subset of Y is confirmable, hence Y is p-consistent.
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If Y is p-consistent and p-entails &, then there is a subset Z of ¥
yielding &/, If Z is empty, & is a p-tautology, and trivially X p-entails .<7.
If Z is non-empty, form the subset X, as the union of all subsets X,
yielding members & of Z. It is easy to show that X, itself must yield &,
and therefore X p-entails 7 since it has a subset which yields 7.

Proof of 4.2. That conclusions derivable from premises by R1-R7 are
p-entailed by them follows immediately from the facts that: (1) imme-
diate inferences in accord with these rules lead from premises to p-entailed
conclusions, and (2) that p-entailed consequences of formulas which are
p-entailed by premises are p-entailed by the premises. The latter has been
established in 4.1, and the former is easily verified by showing that each
of R1-R7 leads from premises to conclusions such that the set consisting
of the premises together with the contrary of the conclusion is not con-
firmable, which is sufficient for the premises to p-entail the conclusion by
Theorems 1.1 and 3.5.

To show that if &7 is p-entailed by a finite set X, then ¢ is derivable
from X by iterated applications of R1-R7, suppose that & is p-entailed
by X. We can suppose that X is ‘minimal’ in the sense that no proper sub-
set of X p-entails 7. If X is empty then it is trivial that it can only p-entail
</ if the material counterpart of &/ is logically true, in which case &
follows from the empty set by R3.

Suppose now that X is not empty. It is an easy consequence of earlier
theorems that, since X is minimal and X p-entails &, the quasi-conjunc-
tion C(X) also p-entails »#. We will show, proving a series of ‘derived
inference rules’ such that anything derivable by them must be derivable
by RI-R7, that C(X) is derivable from X by those rules, and & is
derivable from C (X) by them. The derived rules are set out below, to-
gether with outlines of the steps by which inferences in accord with the
derived rules can be reduced to ones in accord either with the basic ones
or previous derived rules. Only in the reduction of R8, the first derived
rule, will the steps be outlined in detail.

R8. If ¢ logically implies  then n=>y can be derived from
n=¢

Reduction. Suppose ¢ logically implies y. Assume first that 4 & ¢ is
logically consistent. The derivation of n=>y from =>¢ in this case goes
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as follows. (Step 1) n=>¢ (given). (Step 2) (n & ¢)=y (from the empty
set by R3, since n & ¢ logically implies ). (Step 3) n=>y (from Steps 1
and 2, by R6).

Now assume that n & ¢ is not logically consistent. In this case the
derivation of n=>y from n=-¢ goes as follows. (Step 1) #=>¢ (given).
(Step 2) n=y (from Step 1 by R7, since 7 & ¢ is logically inconsistent).

R9. ¢=> (¥ & ) can be derived from ¢ =y and d=>7.

Reduction. Case 1: ¢ & Y & 1 is logically consistent. (1) ¢ =y (given).
(2) p=n (given). (3) (¢ & Y)=7 (steps 1, 2, RS). (4) (¢ &¥) &=
¥ &1 (R3). (5) ¢ & y=¥ &1 (3,4, R6).(6) p=y &7 (1, 5, R6).

Case 2: ¢ & is consistent but ¢ & Y & 7 is inconsistent. (1) ¢=y
(siven). (2) ¢ =1 (given). (3) (¢ &)= (L, 2, RS). (4) ¢= (¥ & ) (3,
R7, using fact that ¢ & Y & 7 is inconsistent).

Case 3: ¢ &y is inconsistent. (1) =y (given). (2) = (Y & n) (1, R7,
using fact that ¢ & V is inconsistent).

R10. ¢=> can be derived from ¢= (¥ & ).

Reduction. Case 1: ¢ &y & n is consistent. (1) =y & 1 (given). (2)
¢ & (¥ &n)=y (from empty set, by R3). (3) ¢=¥ (1, 2, R6).

Case 2: ¢ & & 7 is inconsistent. (1) ¢= (¥ & ) (given).
(@ ¢=y (1, R7).

R11. (¢ v#)= (¢>y) can be derived from ¢=>.

Reduction. Case 1: both ¢ & } and n & —¢ are consistent. (1) ¢=>y
(given). (2) (¢ & ¥)= (¢ o) (from empty set, by R3). (3) = (¢2¥)
(1, 2, R6). (4) (1 & —$)= ($ =) (from empty set, by R3). (5) (v (1 &
& —$))= ($>9) (3, 4, R4). (6) ($ V)= ($=V) (5, R).

Case 2: ¢ & is consistent but n & —¢ is inconsistent. (1) ¢p=-y
(given). (2) (¢ &)= (92¥) (R3). (3) $=($¥) (L, 2, R6). (4)
(¢ va)=(¢2¥) (3, R2, since ¢ v 1 is logically equivalent to ¢). Case 3:
¢ & y is inconsistent. (1) ¢ =y (given). (2) (¢ v )= (¢>¥)(1, R7).

RI2. (¢ Vv d3)= (($1>V1) & (¢2>V,)) is derivable from
¢1=>y; and ¢, =,.

Reduction. (1) ¢,=y, (given). (2) ¢p,=>, (given). (3) (¢1V ¢,)=
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= (¢12¢1) (1, R11). (4) (v dy)= ($22¥2) (2, R11). (5) (41 v §,)=
= ($22¥5) (4 R2). (6) (¢ v b2)= (($:12V1) & ($,21)) (3, 5, RI).

R13. C(S) can be derived from S.

Reduction. Case 1: All formulas of S are conditional. R13 then follows
by iterated applications of R12.

Case 2: Some formulas of S are factual. The conditionalizations of
these formulas can be derived from them by R1, and the case is there-
after reduced to Case 1.

R14. If ¢; & Y, logically implies ¢, & ¥, and ¢, >, logical-
ly implies ¢, >V, then ¢, =, can be derived from
b1=>1;.

Reduction. Case 1: both ¢; & Y, & ¢, and ¢, & — ¢, are consistent.
(1) $y=> s (given). (2) by & vy =, &V, (R3). (3) by = b & Y, (1, 2,
R6). (4) ¢ =, (3, R10). (5) ¢ =V, & $, (3, R9). (6) by =, (5, R10).
(7) ¢1 & 2=V, (4, 6, R5). (8) —¢; & =, (R3, using fact that
¢1>Yy logically implies ¢,>v,). (9) ((¢; & $2)V(—1 & dr))=,
(7, 8, R4). (10) ¢, =¥, (9, R2).

Case 2: ¢; & ; & ¢, is inconsistent, but ¢, & —¢, is inconsistent.
Steps 1-7 same as Case 1. (8) ¢,=>¢; (R3, using fact that ¢, & —¢, is
inconsistent). (9) ¢, =1, (8, 7, R6).

Case 3: ¢, &Y, & ¢, is inconsistent, but ¢, &, is consistent. (1)
&1 &Y=, &V, (R3, usingfact that ¢, & , logicallyimplies ¢, & /).
(2) ¢2=>, (1, R7, using fact that ¢; & ¥, & ¢, &\, is logically incon-
sistent).

Case 4: ¢y & Y, is inconsistent. (1) ¢, =y, (given). (2) ¢, =, (1, R7).

R15. If &/ and # are factual or conditional and </ p-entails
% then % can be derived from 7.

Reduction. Case 1: 4 is p-entailed by the empty set, and is conditional:
say #=¢=>y. Then ¢ must logically imply /, hence ¢ = 1 can be derived
from the empty set by R3.

Case 2. 4 is p-entailed by the empty set, and is factual, say & = ¢$. Then
clearly ¢ is logically true, hence is logically implied by 7. T => ¢ is deriv-
able from the empty set oy R3, and ¢ is derivable from T = ¢ by R1.
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Case 3. 4 is not p-entailed by the empty set, both &7 and & are condi-
tional, say & =¢; = y; and #= ¢, =,. It must be the case that ¢ &Yy
logically implies ¢, & /5, and ¢, >, implies ¢, >, (this is what is re-
quired for &7 to ‘yield’ %). By R14, & is derivable from & in this case.

Case 4. 4 is not p-entailed by the empty set, one or both of & or & is
factual. This case is reduced to Case 3 by deriving the material counter-
parts of the factual formulas involved from them, and conversely, accord-
ing to RI.

This concludes the proof of 4.2.

Proofof 4.3. Let X be the set of conditionals {4;=B,..., 4,=B}; it must
be shown that there is no set ¥ of n—1 or less members p-equivalent to X
in the sense that all members of Y are p-entailed by X and all members of
X are p-entailed by Y. Suppose ¥ were such a set. It can be supposed
without loss of generality that no member of ¥ is p-entailed by the empty
set, for otherwise that member could be deleted from Y and the remaining
members of ¥ would also be p-equivalent to X. For every member & of
Y, there must be a subset X, of X such that C (X,,) p-entails . The set
Z of all the quasi-conjunctions C (X,,) for &7 in ¥ must also be p-equiva-
lent to X, for quasi-conjunctions of members of a set are p-entailed by
the set, and since all members of Y are p-entailed by these quasi-conjunc-
tions, and all members of X are p-entailed by Y, all members of X are
p-entailed by Z. Z is therefore a set of less than # members, all of whose
members are quasi-conjunctions of members of X, and which is -
equivalent to X. Itis easy to show, however, that a set of quasi-conjunctions
of members of X can only p-entail a member of X if in fact that member
of X is included in the set of quasi-conjunctions entailing it. Hence Z
would have to actually contain all members of X, and so have at least 7
members, contrary to assumption.

We conclude with some informal remarks on the significance of the
results given in Theorem 4. Part 4.1 of course substantiates what we have
allalong assumed.: i.c., that p-entailment at least satisfies those entailment-
theoretic conditions which are essential if it is even to make sense to
characterize this relation in terms of derivability in accord with rules of
inference. Part 4.2 shows p-entailment to be so characterizable, in terms
of a rather small set of simple rules. The extent to which this characteriza-
tion throws light on real life reasoning involving conditionals may per-
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haps be doubted (perhaps real life reasoning is best understood in terms
of inferences in accord with partially sound rules), but at least there is
some intrinsic interest to the rules themselves which makes them worthy
of independent comment.

Observe that rule R1 (that the conditionalization, T = ¢, of a factual
formula ¢ can be deduced from it, and conversely) is the only one of the
seven rules linking factual and conditional propositions, and this link is
trivial. In fact it is easily demonstrated that in deducing conditional con-
clusions from conditional premises it is never necessary to use R1: the
path from conditional to conditional need never proceed by way of the
factual. Our rules have the peculiarity that in going from factual to
factual formulas it is necessary to go by way of conditionals, as is obvi-
ously necessitated by the fact that all of the usual rules of sentential logic
are here packed into conditional rules like R3.

Rule R2, that logically equivalent propositions are intersubstitutable
in the antecedents of conditionals, requires no special comment beyond
reiterating the point made in Chapter 1, Section 6 that there are apparent
violations of this principle in the case of conditionals with disjunctive
antecedents. Accepting the validity of the principle therefore requires us
to regard conditionals whose antecedents are grammatical disjunctions
(and possibly ones whose antecedents are grammatical negations of con-
junctions) as being of a different logical form to be symbolized according-
ly (as conjunctions of conditionals).

R3 permits the derivation of a conditional tautology (a conditional
whose antecedent logically implies its consequent) from anything. It is
intuitively plausible that conditionals of this sort should be affirmable
‘no matter what’.

R4 involves the tricky conditional with disjunctive antecedent. Regard-
ing the ordinary language ““if either A or B then C” as equivalent to the
joint assertion of “if 4 then C” and “if B then C”°, what R4 says in effect
is that the logical (A v B)=>C can be derived from “if either 4 or B then
C”. The converse, however, is not universally probabilistically sound,
since this is essentially the disjunctive narrowing rule discussed in
Section 1.6.

R5 can be looked on as specifying special circumstances under which
the conjunctive narrowing pattern, to infer (4 & B)=>C from A=-C, is
sound (we noted in Section 1.3 that it is not universally sound). This is the
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case in which not only 4 = C can be affirmed but 4 => B as well. Thus, we
can narrow the antecedent A in the conditional ““if 4 then C” by adding
to A anything probabilistically implied by A. Of course, this is not the
only situation in which conjunctive narrowing is sound, but this is all that
needs to be assumed in order to be able to deduce all universally sound
consequences.

R6 is of course the Narrowed Hypothetical Syllogism which has been
discussed at length in Section L.5. Note that it is here formulated in such a
way as to be a kind of converse to the special conjunctive narrowing
schema of R5. If we regard 4 = B as antecedently given, then R5 says that
(4 & B)=>C can be derived from A=>C, and R6 says that A= C can be
derived from (A4 & B)=>C. Combined, R5 and R6 assert that given
A=> B, the propositions 4= C and (4 & B)=>C are equivalent.

The import of R7 is that anything can be derived from p-inconsistent
premises. This shares the doubtfulness of any claims about the conse-
quences of inconsistent premises, which we are forced into by virtue of
our basing the definition of probabilistic soundness on a possible worlds
semantics (albeit a possible probabilistic worlds semantics), and which will
be returned to in Section IV.9. The rule has the added drawback that it is
the one most critically dependent on arbitrary aspects of our formulation,
and in particular on our exclusion of conditionals with inconsistent ante-
cedents and exclusion of improper probability functions. In fact, in an
earlier formulation (Adams [1] and [2]) inconsistent antecedents and
improper probability functions were allowed (with the arbitrary stipula-
tion that P (4=B)=1 if P (4)=0), and it can be shown that the valid
rules for the earlier formulation are interderivable with our present rules
R1-R6 (but now interpreted so as to apply to conditionals with incon-
sistent antecedents). Thus, RI-R6 appear to be relatively ‘robust’ in that
they do not seem to depend on arbitrary aspects of the formalism, while
R7 can be regarded as the syntactic expression of our exclusion of im-
proper probability functions from the semantics. In any case, R7 should
not be regarded as implying anything about what it would actually be
rational to infer from inconsistent ‘data’. It is probably significant in this
connection that R7 is the only one of our rules which is not also valid
when the conditionals involved are treated as material conditionals.

Theorem 4.3 shows that our formal language does not include any
single formula ¢ =>1 which acts like the conjunction of the two formulas
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Ay =>B and 4, =B relative to the p-entailment relation: i.e., no formula
¢=-y is both p-entailed by 4, =>B and 4, =B and p-entails these two
formulas. More generally, any set

{4, > B, ..., 4,= B}

cannot be reduced to a smaller p-equivalent set, so there is no limit to the
size of the p-irreducible premise sets which we may have to consider. Of
course, it is trivial that our formal language can be extended by adding
‘formal conjunctions’ to it which act like conjunctions relative to the p-
entailment relation. As we have already seen, however, the price which
must be paid for making such an extension is that our probabilistic
semantics cannot be extended to it in a ‘natural’ way (Lewis® triviality
result).

NOTES
1 Except, see Hintikka (32).
2 This basic theorem has been given in Suppes [46] and Adams [2], and is apparently
widely known to probability theorists. Adams and Levine [7] state a partial converse
to it which holds when all of the propositions involved in an inference are factual, and
all premises are essential: namely that the maximum possible uncertainty of the con-
clusion eguals the sum of the uncertainties of the premises, or else 1, whichever is least.
Adams and Levine also apply linear programming analysis to determine maximum
conclusion uncertainties where there are various kinds of redundancies among the
premises (e.g., where (4 & B)V (4 & C)V (B & C) is inferred from A, B, and C).
Interesting unsolved problems remain in determining maximum conclusion uncertain-
ties in inferences involving conditionals. The following is a striking fact which suggests
that such an investigation might have intriguing results. The minimum probability of
the conclusion, B, of the ‘direct’ Modus Ponens inference with premises A and A=B
equals the product of the probabilities of the premises, while the maximum uncertainty
of the conclusion — A of the ‘inverse’ Modus Tollens inference with premises 4= B and
— B equals the uncertainty of — B divided by the probability of 4= B. In the direct case
minimum conclusion probability is directly proportional to the conditional premise’s
probability, and in the inverse case the maximum conclusion uncertainty is inversely
proportional to the couditional premise’s probability.
3 We must reiterate here that this holds only in cases where all premises, either of the
Modus Ponens inference or of the Modus Tollens inference, are probable at the same
time. We will see in 1V.1 that when the conditional A= B is accepted at one time and
then — B is learned, it is not always rational to infer — A. This is connected with the fact
that where the premise of a Modus Tollens inference is counterfactual, of the form *“if A
were the case then B would be”, it may not be rational to affirm —A even though —B
is accepted at the same time (though this is controversial — see Section Iv.4).

CHAPTER III

MOTIVES FOR WANTING TO ASSURE THE
SOUNDNESS OF REASONING; TRUTH AND
PROBABILITY AS DESIRABLE ATTRIBUTES OF
CONCLUSIONS REACHED IN REASONING

1. INTRODUCTION: AIMS AND METHODS

This chapter is ultimately concerned with the basic assumptions of the
theory of probabilistic soundness developed in Chapters 1 and 2, and in
particular with the legitimacy of the ratio representation of the probabil-
ities of conditionals, and with the ‘probability equals probability of truth’
assumptions which entail that truth-conditional soundness guarantees
probabilistic soundness in the case of inferences involving only factual
propositions. These issues will not be approached in the way which is
usual in current literature on ‘foundational questions’ concerning truth
and probability: namely as matters of conceptual analysis, where one
might hope, for example, to show by analysis of the concept of probability
that the probabilities of conditionals are ‘appropriately measured’ as
ratios. We shall begin instead by considering what ‘attributes’ of con-
clusions, which are perhaps only crudely described by the words ‘truth’
and ‘probability’, persons might have motives for wanting in the conclu-
sions they arrive at in their reasoning, which might in turn motivate their
efforts to assure the soundness of this reasoning. We shall indeed find
reasons why persons should want to arrive at conclusions which are ‘true’
in a kind of ‘correspondence’ sense under certain circumstances, and why
they should under similar circumstances want to arrive at conditional
conclusions only when their ratio probabilities are high, and these will be
regarded as supporting the basic assumptions of our theory by at least
showing why persons should want to assure the kind of soundness which
our probabilistic soundness tests are capable of showing. It is a further
question, which we shall not enter into here, whether this sense of ‘true’
and the ratio measure of conditional probabilities are in some way ‘part
of the meanings of truth and probability’.

As the foregoing remarks have already suggested, we shall assume that
the primary reason people have for wanting to assure the soundness of
their reasoning arises from their desire to reach ‘the right’ conclusions by
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it. Thus, to more clearly understand motives for trying to assure sound-
ness, we must understand why people should under certain circumstances
want their conclusions to be of the right kinds. In trying to come to grips
with this question, we shall consider one kind of motive only: namely a
Pragmatic motive arising from the fact that people often act on their
conclusions, and it is plausible to suppose that the results of their actions,
good or bad, may depend on the rightness of the conclusions acted on.
This leads us to inquire in some detail into how conclusions of different
kinds which can be reached in reasoning may influence behavior, and how
the good or bad results of this behavior may be related to the ‘rightness’
of these conclusions. Considering the latter question leads us in turn first
into the currently very active field of the theory of reason and action,
and second, when we come to ask how conclusions about probabilities
affect behavior, into the domain of theories of decision making under
risk.

To anticipate a bit, we shall find one carefully worked out theory of
action (more exactly, a theory of action-descriptions), due to D. S.
Shwayder, which relates four ‘factors’ of interest to us — belief, truth,
action, and success — in such a way as to suggest a strong reason for
wanting to hold beliefs (which might be the conclusions arrived at in
reasoning) which are true in a kind of correspondence sense, assuming
persons to act on them. Turning to the question as to how conclusions
about probabilities influence behavior, the expected utility theory of
decisions based on estimated probabilities, which is well known in the
literature of statistics and the behavioral sciences, furnishes an elegant
description of this influence, which also can be turned to account in
explaining why it should be desirable to estimate probabilities correctly
if persons making these estimates hope to be ‘best off in the long run’,
assuming that there are objective limitations on how often it is possible to
be right in conclusions about particular matters of fact. These considera-
tions in turn explain why persons should want to arrive at highly probable
conclusions as to matters of fact, in a sense of probability which can be
equated to probability of truth. Finally, considering how persons act on
conclusions of conditional form of one particularly important kind (i.e.,
a conclusion as to what will happen if a particular action is taken) explains
both by we cannot easily attach truth-values to such propositions in such
a way that persons are best off arriving at ones to which the value ‘true’ is
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attached (and not arriving at ones to which the value ‘false’ is attached),
and why one is best off in the long run to estimate their probabilities as
ratios and act on those estimates.

A couple of preliminary remarks and a major disclaimer are in order,
before turning to details. Our concern with the aims of reasoning, and in
particular with that of ‘arriving at the truth’, should be contrasted with
some well known and superficially similar considerations relating to truth
advanced by Michael Dummett in his article “Truth’ [16], where he says
“It is part of the concept of truth that we aim at making true statements.”
As the quotation suggests, Dummett uses this claim in drawing certain
consequences about the concept of truth, which shows that his enterprise
is different from ours. Two other points of contrast are also worth noting,
however. One has to do with the fact that where we are concerned with
truth as a possibly desirable or aimed at attribute in the conclusions
people arrive at ‘for themselves’, Dummett is concerned with it as an
attribute people aim to assure in what they tell others — following Grice
[24, 25] presumably because that is an attribute of the conclusions they
want others to reach. This is not to say that Dummett is wrong in his con-
tention concerning the aims of statement-making, but it should be clear
that the way in which Dummett supposes truth to be aimed at, and the
reasons for aiming at it, are very different from ours.1

A somewhat more general difference between Dummett’s approach and
the present one is that his attempt to get at the concept of truth via the
aims of statement-making locates his investigation within the general
framework of the theory of Speech Acts, hence of language and communi-
cation, while our approach is largely independent of such concerns.
Though we shall be concerned with actions and their motives, the ones we
shall be primarily concerned with will not be linguistic, nor involve any
attempt to influence the thought or behavior of others.

Our major disclaimer is that we shall not in any way pretend that the
results of the investigation to follow are definitive. We shall consider only
a very limited class of propositions which might be arrived at as conclu-
sions in reasoning, and only one kind of mot ve for wanting to be right in
such conclusions. No implicit claim is made that other kinds of conclu-
sions and other motives for wanting to be right about them are unimpor-
tant. Nevertheless, it seems worthwhile to undertake even a very limited
investigation of reasoning in relation to its motives, for only thus is it



72 CHAPTER III

possible to substantiate claims as to the adequacy of this or that theory
of soundness in reasoning.

2. A MOTIVE FOR TRYING TO REACH TRUE
CONCLUSIONS ABOUT CERTAIN PARTICULAR
MATTERS OF FACT

It is intuitively plausible to suppose that where persons are guided in their
actions by their beliefs, they are generally better guided if those beliefs are
true than if they are false. This is the case in the following example. A man
wants to meet a friend of his who is expected to arrive at the local airport
on such and such a day. He telephones the Flight Information Desk on
the morning of this day to ask the expected arrival time and is told that
this is 2 p.m. that afternoon. Acting on this information, he drives to the
airport 50 as to be in time to meet any plane arriving close to 2 p.m. His
action may be described as being done for the purpose of meeting his
friend, in the belief that his friend would arrive by plane at 2 p.m.2 The
purpose may be achieved or may fail to be achieved, and it is evident that

" whether or not the belief acted on is correct is closely bound up with the
success or failure of the action. If the belief is true the action is likely to
succeed, while if the belief is false the action is likely to fail. To the extent
that the foregoing action is typical and to the extent that the fore-
going ‘belief-truth-action-success’ formula is valid, we have a reason why
persons should want the beliefs on which they act to be true. We also
have a motive for such cognitive actions (belief-influencing actions) as
asking for information or, possibly, checking the soundness of reasoning
which issues in conclusions of the kind which can be acted on. We shall
shortly see that the formula is subject to severe limitations, even as an
explanation of the pragmatic reasons for wanting to arrive at ‘right’ con-
clusions, but first some comments on it are in order.

The belief-truth-action-success formula is consistent with much current
theory of action, and it can be shown to be implicit in at least one, namely
a theory of action-descriptions propounded by D. S. Shwayder in The
Stratification of Behavior ([49], see especially Part Two). The relevant
points of Shwayder’s analysis can be summarized as follows. Shwayder
takes the form of an action-description to be one in which certain manifest
animal behavior is described, and a purpose is ascribed to that behavior.

e |
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An example might be to describe a dog’s action as ‘digging for a bone’, in
which the manifest behavior is the digging, and the purpose is to find a
bone. The ascription of purpose serves the function of explaining the
manifest behavior, and therefore action-descriptions are in Shwayder’s
phrase ‘explanations-cum-descriptions’. The ascription of purpose also
means that the action must be conceived of as possibly succeeding or
failing, so that a person would not properly identify the action referred to
in the description ‘digging for a bone’ if he did not know what the condi-
tions of success (or failure) would be.

Shwayder also takes the further step, which is essential for present
purposes, of supposing that action-descriptions, along with ascribing
purposes to behavior, also implicitly impute beliefs to the agent, to the
effect that the conditions of success are met. Of course these beliefs need not
have any special connection with language (that would be absurd in the
case of the dog), but the imputation of belief is clearly consonant with the
view that action-descriptions function to explain behavior. It would not
make sense to describe an agent as doing something for a purpose if it
were not supposed that the agent believed that the action would accom-
plish the purpose.? Given Shwayder’s assumptions, it is evident that the
belief-truth-action-success formula follows immediately, at least in appli-
cation to the beliefs which are for Shwayder the ones which are most
properly described as those which are acted on directly; namely that the
conditions of success are met. If the belief that the conditions of success
are met is true, then the action presumably will succeed, while if it is false
(or one of the beliefs that a condition of success is met is false), the action
will presumably not succeed.

It is worthwhile remarking on the sense of ‘true’ which is appropriate to
the belief-truth-action-success formula, which is something like a corre-
spondence one. Going back to the dog, a condition for success for his
action of digging for a bone is that there should be a bone underground
where he is digging, and this also is what would make his belief that there
is a bone (a belief that a condition of success is met) true. The corre-
spondence is therefore between what the dog thinks and what is or is not
underground. An important complication, however, is that the correspon-
dence is between what the dog thinks at one time and what becomes
manifest (perhaps ‘comes to pass’ would be better) at a later one. The
“facts’ in evidence to the dog at the time he undertakes to dig are those
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which importantly influence his action, while those that are ‘brought to
light’ later are those which determine its success. More geneially, at the
time when agents have the strongest motive for wanting to assure the
rightness of the conclusions on which they expect to act, the facts which
determine the rightness of these conclusions are not in evidence. Con-
versely, when the latter facts come to light it is of no immediate practical
concern whether or not they confirm prior beliefs, since it is too late by
then to do anything about it. The immediate moral for us is to emphasize
the transitory character of the pragmatic motive to which we have here
drawn attention, for wanting to arrive at true conclusions. We also see
that it must be difficult if not impossible to account for any practical
interest we may have in the rightness of beliefs about the past on the basis
of such motives, and we now turn very briefly to this and analo gous
difficulties which show the need to generalize our account of even the
practical motives which people may have for wanting to arrive at true
conclusions.

We have already seen what the difficulty is in trying to explain practical
concern with the correctness of beliefs about the past along the lines
already outlined : it is not the agreement or lack of it between those beliefs
and the ‘“facts’ which directly determines the success or lack of it of actions
which these beliefs may influence. This is not to say that beliefs about the
past don’t influence action — they clearly do. For instance, the man hoping
to meet his friend at the airport would have been importantly influenced if
he had been told by the Flight Information Desk that his friend’s plane
had already landed. But the influence would be described as ‘indirect’,
and determined by the expectations as to the present and future to which
knowledge of the past gives rise. Generalizing, we would expect a prag-
matic theory of our interest in propositions concerning the past to have to
take into account ‘inductive’ inferences as to the present and future which
are made from these propositions, and this is obviously a very complicated
matter.

There are two kinds of beliefs which are sometimes regarded as factual,
for which only half of the belief-truth-action-success formula holds, and
for which in consequence it is possible to explain why one should want to
hold ones which are true, but not why one should want to avoid holding
ones which are false. These are beliefs about measured values, and beliefs
expressible as generalizations. Consider the proposition that Jones is six
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feet and one inch tall. In theory at least, this proposition should be con-
sidered as false if Jones is six feet and one and one thousanth of an inch
tall. However, there is almost no practical action which one can imagine
taking on the basis of the belief that Jones is six feet and one inch tall
which would not succeed if Jones were six feet and one and one thousanth
of an inch tall. In this case, however, the inapplicability of the belief-truth-
action-success formula should perhaps not be taken as an indication of
the need to generalize the formula, but rather as a sign that in fact we
rarely if ever have a reason for wanting to be exactly right about measured
values (where there is a continuum of possible values), and therefore
appropriate tests for the soundness of reasoning leading to conclusions
concerning them should only be required to show that these conclusions
are ‘sufficiently accurate’ for practical purposes.4

Similar remarks apply to actions based on conclusions expressible as
generalizations. An example might be to drive to the airport so as to
arrive by 2 p.m. on a given day (in order to meet the friend), based on the
belief that the only planes ever landing at the airport land at 2 p.m.
(perhaps there is but one flight per day). What this illustrates is the fact
that typical practical actions based on beliefs expressible as generaliza-
tions can also be regarded as being based on beliefs expressible as
instances of the generalizations. If the generalization is true, the instance
is true and the action succeeds, but if the generalization is false the
instance may still be true and the action still succeed. Thus, we can
explain why we should want to arrive at true conclusions expressible as
generalizations, but it is not so obvious how to explain why we should
want to avoid arriving at false conclusions of this sort. Though it is more
doubtful in the present case than it is in the case of conclusions about
measured values, it is plausible to assume that it is usnally not very
important that generalizations arrived at as conclusions have absolutely
no exceptions, and therefore that appropriate tests of the soundness of
such reasoning should be designed to guard against arriving at conclu-
sions with ‘too many’ exceptions.?

The final example to be mentioned in this section of a type of proposi-
tion, practical concern with which it is difficult to account for on the lines
so far advanced, is that of ones characteristically expressed as denials of
particular propositions. The difficulty with them is that it is hard to find
actions which are plausibly regarded as being based on acceptance of
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them. For example, the man hoping to meet his friend at the airport might
have learned in some way that his friend’s plane was not going to arrive at
2 p.m. Coming to believe this might have the effect of deterring the man
from driving to the airport so as to be on hand by 2 p.m. (supposing he
had previously formed the intention of doing so) but refraining from
acting is not to perform an act in the ‘proper’ sense, since it cannot be
said to have a purpose or to succeed or fail.

The example just given of the influence on behavior of arriving at a
negative conclusion suggests that in focusing solely on actions which may
be taken, based on conclusions arrived at, we have unduly restricted our
consideration of the kinds of practical influences beliefs may have. In
particular, arriving at the negative conclusion led the person to ‘decide’
not to drive to the airport, and though this decision is not an action, it has
consequences, good and bad, in terms of which it and the beliefs leading
to it can be evaluated. It turns out that precisely this kind of influence on
behavior is what must be taken into account in order to describe the effect
on behavior of arriving at conclusions about probabilities. Though we are
not primarily concerned here with the development of tests for the
soundness or reasoning which leads to such conclusions ~ the application
of which might be motivated by practical concerns as to the results of
acting on these conclusions — considering the relation between judgments
about probability and decision and action may plausibly be supposed to
throw light on what ‘right’ probabilities are, and why these might be
connectable to probabilities of truth in the case of factual propositions
but not in the case of conditionals. We begin by describing in some detail
the well known theory of decision on the basis of expected utilities, which
characterizes the connection between probability judgments and decisions,
and in the succeeding section we consider motives which people might
have for wanting to be ‘right’ in their estimates of probabilities, given that
they decide and act on these estimates in accord with the assumptions of
the expected utility theory.

3. ACTING ON ESTIMATED PROBABILITIES;
THE EXPECTED UTILITY THEORY

We have already seen that the man in the airport example could have been
regarded as acting on his belief that it was likely that his friend’s plane
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would arrive at 2 p.m., in driving to the airport so as to arrive by 2 p.m.
This is a particular instance of the general rule: fo act on the belief that a
proposition is probable is very much the same as to act on the belief in the
proposition. Thus, it is clear that conclusions about probabilities pro-
foundly affect behavior. However, this influence is more general than that
which is encompassed in the formula above. The belief that one thing is
more probable than another, though neither may be probable, may also
affect action, for instance as such beliefs may affect the course of a search
for a missing article. What is needed is a general theoretical account of the
influence of probability judgments on behavior. Fortunately, this is just
what is provided by the expected utility theory of decision making under
risk, which can be regarded as being in some respects a generalization of
Shwayder’s picture of reason and action. Because of the importance of
the expected utility theory to subsequent developments we describe it in
some detail below, though the reader is referred to the literature of deci-
sion theory for a justification of its basic assumptions.®

The basic ideas of the expected utility theory are well illustrated in the
following example, in which a man about to leave his house for the day is
trying to decide whether to wear his raincoat or leave it behind. This is a
decision problem in which the man must decide which of the following two
alternatives to adopt:

A, = to wear his raincoat
A, = to leave the raincoat at home.

Note that while 4, resembles an action ‘proper’ (in Shwayder’s sense) in
that some distinctive overt behavior is involved, 4, is essentially to refrain
from taking an action, which is clearly not an action ‘proper’. Thus, while
the alternatives decided among may include actions, not all of them need
be.

Among the factors influencing the man’s decision are his estimates of
the likelihoods of two contingencies

C; = that it should rain during the day

and
C, = that is should not rain during the day.?

‘We may suppose the man’s probability estimates for the two contingencies
to be p(Cy) and p(C,), which are assumed to be numbers between 0 and
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1, summing to 1. Presumably if p(C;) is high (the man judges rain to be
likely), then he will be likely to adopt alternative A,, while if the p(C,) is
high, he will be likely to adopt A4,.

Two other factors influencing the man’s decision, besides the estimated
probabilities of the contingencies, are his estimates of the results for him
of adopting any alternative in each of the contingencies, and the desira-
bility or undesirability of those results. For instance, if he thinks that the
result of leaving the coat at home in the event that it rains will be that he
will get a soaking, and he thinks it very undesirable to get soaked, then he
will be more likely to take the coat than if he does not regard this result as
particularly unpleasant. The two factors of estimated result and desirability
are represented theoretically by the estimated result R(4;, C;) expected
to follow if A, is adopted and contingency C; arises, and by the numerical
utility u(R(A;, C;)), which measures the degree of desirability of the
estimated result R(4;, C;). For instance, if the man estimates that he will
get soaked if he leaves his coat behind (he adopts 4,) and it rains (con-
tingency C, arises), and he regards that as excessively unpleasant, then
u(R(4,, C,)) will be very low.

The thorny problem of attributing a clear sense to numerical utilities
(as well as that of attaching a sense to numerical probability estimates),
namely the measurement problem, is one which we shall not discuss here,
though the works already cited, particularly Savage [17], discuss it in
detail. For the sake of illustration, we shall simply assume here a
‘plausible’ set of numerical estimated probabilities and utilities, as
follows:

p(C)=p(C)=1%

u(R(Al’ Cl)) ==5
u(R(4y, C))=—2
u(R(A4,, Cy))=—20
u(R(4,, C,)) = 5.

and

We assume in effect that the man estimates the chances of rain at 50%.
The utilities of either of the possible results which might follow on the
man’s taking the coat (adopting alternative 4,) are assumed to be some-
what negative, that of the case in which it rains, Cj, being somewhat more
disagreeable than that in which it does not rain, C,. The utilities of the
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possible results which might follow on adopting 4, — leaving the coat
— are more disparate than are those of the possible results following on
adoption of 4,. R(4,, C), the result of leaving the coat in the event of
rain, is here represented as by far the worst of the various outcomes con-
sidered, while R(4,, C,), the result of leaving the coat in the event of fair
weather, is here represented as the only one of the possible results which
is positively pleasurable.

Thekey ‘law’ of the expected utility theory is that a man estimating prob-
abilities and desirabilities in the way outlined above will then adopt that
alternative among all of the alternatives considered which has the highest
expected utility. The expected utility of any alternative 4, is computed by
multiplying each of the utilities of its possible results by the probability of
the contingency leading to that result, and then adding together these
products. In the present example, the expected utility of 4,, which we can
denote ‘u(4,), is therefore equal to the product u(R(4;, C,))xp(Cy)
added to the product u(R(4,, C,))xp(C,). Thus, u(4,) is equal to
—5x%+—2x3=—3.5. Computing u(4,) in the same way gives the
sum —20x +5x$= —7.5. Therefore, since the expected utility u(4,) is
higher than u(4,) (though both are negative), the man will adopt alterna-
tive 4, according to the expected utility theory; i.e., he will wear his
raincoat.

Though we shall not consider the justification for the apparently
arbitrary ‘formula’ that persons adopt alternatives with the highest ex-
pected utilities,® it is possible to show that it agrees at least qualitatively
with what we would intuitively expect. One special case, for instance, is
that in which the decision maker regards one contingency as certain, so
that its probability is estimated as 1, while the probability of any other
contingency is estimated as 0. In this case the expected utility of any
alternative is equal to the utility of that result which is certain would
follow on adopting it, so the law that the decision maker adopts the
alternative with the highest expected utility reduces to the plausible rule
that he adopts the alternative whose estimated result is most desired
(this is very close to our original formula that to act on the belief that a
proposition is probable is very nearly the same as to act on the belief in
the proposition). Another special case is that in which the possible results
of adopting alternatives are classified as either success or failure (to attain
some objective), where no way of succeeding is better than any other (and
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the same holds for failing), and where succeeding is assumed to be more
desirable than failing. In this case it is easily seen that the alternative with
the highest expected utility is simply the one which has the highest
probability of resulting in success, and the ‘maximize expected utility’
rule simplifies to the rule to maximize the probability of success.

The special case just described shows that the expected utility theory of
decision can be regarded as being in some ways a generalization of
Shwayder’s theory. The purposes which explain action in Shwayder’s
theory can be regarded as analogous to the aim of securing most desirable
results, motivating the adoption of the alternative with the highest expected
utility. That degrees of desirability are brought explicitly into account in
the latter is a complication not present in the Shwayder theory. Similarly,
the estimated likelihoods of occurrence of contingencies are in some ways
analogous to the beliefs on which actions are based in Shwayder’s account.
Degree of likelihood represents an added complexity. Note too that
attributing utilities to the possible results of acting and estimated likeli-
hoods to these results can serve the same basic explanatory function which
Shwayder supposes the ascription of purpose and belief to serve.

Two essentially new features of the expected utility theory are its con-
sidering alternatives which may not be actions, and decisions which, even
if they issue in actions, are not the same as these actions. The latter
innovation is especially important because, as suggested at the end of the
previous section, considering the consequences of making decisions on
the basis of beliefs may make it possible to evaluate the ‘goodness’ of
kinds of beliefs which do not ordinarily issue in actions. Our example of
the man deciding whether to wear his raincoat can be modified to illustrate
this. Suppose the man had believed that it would not rain on the given day.
As we have noted, this belief would have led him to leave his raincoat
behind. If this belief were wrong, however, and it did rain on the given
day, the result for him would have been to get soaked (we have assumed),
which would not have happened if he had correctly concluded that it
would rain on the day. Though the result of holding the negative belief in
this case is not to take an action with unfortunate consequences, it is still
to make a decision with unfortunate consequences, and this illustrates the
utilitarian disadvantage of being wrong about a negative conclusion.

Now we want to consider the utilitarian advantages and disadvantages
of arriving at better or worse estimates of probabilities.
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4. A MOTIVE FOR WANTING TO ARRIVE AT
CORRECT PROBABILITY ESTIMATES?

Assuming conclusions about probabilities to have the influence on decision
and action characterized in the expected utility theory, people should have
the best of utilitarian reasons for wanting to arrive at correct ones. These
would in turn motivate concern for the soundness of reasoning leading to
such conclusions. Or so it would seem. But if we consider more closely
acting on conclusions as to the probabilities of events whose ‘objéctive
probabilities’ are generally agreed on, it appears at first sight impossible
to explain on utilitarian grounds why people should want to be right
about them.

Accepting the expected utility picture of the connection between alter-
natives, contingencies and results, it is clear that if a person knew in
advance which contingency would ultimately arise, the best alternative
to adopt would be the one leading to the best result ‘under the circum-
stances’: i.e., in the contingency actually arising. Estimates of probabilities
which would lead the person to choose this ‘best-under-the circumstances’
alternative would therefore be best when judged from the utilitarian point
of view. But it is easily seen that the probability estimates which would
lead a person to adopt the best-under-the-circumstances alternative would
be precisely those which assigned probability 1 in advance to the con-
tingency ultimately arising and probability 0 to all contingencies not
ultimately arising. Call this probability assignment the ‘lucky’ one. Ex-
pected utility theory then entails that the most forfunate conclusion to
arrive at about the probabilities of a set of contingencies is the lucky one.
But it is evident that the most fortunate probability estimates are not
always the same as the ‘objective probabilities’ — for instance as to a
coin’s falling heads when flipped on a particular occasion, which is
generally assumed to be 4, though the lucky probability estimate is
necessarily either 0 or 1.

The foregoing result — that the most fortunate probability estimate is the
Iucky one - also agrees well with intuition. The man who, no matter how
irrationally, can correctly guess what the future holds and act on his
guesses is better off than the man who cannot, even though the latter’s
probability estimates may be more ‘rational’.10 If the consequences both
of the expected utility theory and intuition are to be accepted, though, we
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are left without any apparent utilitarian reason for wanting to estimate
probabilities correctly (in particular in such a way as to agree with the
generally accepted probabilities connected with random phenomena).

Before trying to isolate a pragmatic value which might attach to correctly
estimating the probabilities of contingencies whose ‘true probabilities’
can be calculated (e.g., that the points on two dice will total four when
the dice are rolled, which is a contingency about whose probability it is
easy to be mistaken), it is worth noting that it is often the case that when
an effort is made to estimate probabilities something close to the lucky
estimate is aimed for. The familiar example of weather forecasts couched
in probabilistic terms (e.g., ‘the chance of rain tomorrow is 30%) is
arguably a case in point. There is clearly a sense in which weather fore-
casters aim to estimate rain as probable (say for the following day) on
days when rain actually ensues, and as improbable on days when rain
does not ensue. Assuming that persons act on these forecasts (say in
deciding whether to wear their raincoats) as the expected utility theory
says they do, they have good reason to want weather forecasters to be ‘as
accurate as possible’ in this sense.l! In fact it is hardly plausible that
people with practical decisions to make would bother with such weather
forecasts (or be willing to pay the forecasters) if they did not have reason
to think that the forecasters were trying to come as close as possible to
approximating the lucky forecast. If we look more closely at what the
foregoing ‘as close as possible’ might mean, a way out of the dilemma into
which we have gotten ourselves in trying to find a utilitarian value in
estimating probabilities correctly suggests itself.

It is undeniable that there is a sense of ‘best off” in which we feel that
people are ‘best off” estimating, say, the probability of rolling points
totalling four with two dice as 1 in 12 (this being the theoretically correct
probability). This in spite of the fact that we know that it is possible to be
still better off estimating this event to have probability 1 prior to its
occurrence, on all occasions when it actually does occur, and to have
probability 0 on all other occasions. Plausibly the reason in this: though
the logically best estimates to make (consistent with the expected utility
theory) are the lucky ones, it is not practically possible to be Tucky all of
the time. If we take into account practical limitations on how often it is
possible to be right or ‘lucky’ in the long run in predicting certain kinds
of occurrences, it may be possible to explain why people are best guided
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‘in the long run’ to estimate probabilities agreeing with the theoretically
correct ones, and acting on those estimates. We shall see in a moment that
the rationality of acting on the basis of ‘objective’ probabilities can be
partially explained along these lines, but first let us note that ‘good’
probabilistic weather forecasts do contain implicit information as to how
Iucky it is possible to be in making weather forecasts under particular
circumstances.

Consider what can be reasonably inferred on reading the forecast ‘the
chance of rain tomorrow is 309’ in the evening newspaper. An obvious
inference is that there is good reason to believe that on 30% of occasions
similar to that in which the forecast was made, rain actually occurs on the
following day. The sense of the word ‘similar’ here is one which the
forecasters themselves could spell out to an extent, citing barometer
readings, wind conditions, reported meteorological patterns, and so on,
and the inference would be that when these conditions prevail rain occurs
during the succeeding 24 hours 30% of the time. The second plausible
inference is that no known method of weather forecasting relying on
information known or ‘available’ to the forecasters at the time of fore-
casting could be expected to be right more than 30% of the time in the
long run in predictions of the form ‘it will rain tomorrow’ made on
occasions similar to the present one (e.g., with the same meteoro-
logical patterns as those presently prevailing, etc.). It is the second
inference which tells us something about how often it is possible to be
right or ‘lucky’ in making weather forecasts under similar circum-
stances. Also it is this which distinguishes probabilistic weather forecasts
from simple relative frequency statements, which is a point worth further
remark.

Note that if all that could be inferred from the forecast of a 30% chance
of rain on the morrow was that on 30% of similar occasions rain actually
occurs the following day (or that there is strong reason to think this is so),
then in any region in which it rained 30%; of all days every year it would be
legitimate to make the prediction ‘30% probability of rain tomorrow’
every day of the year, meaning that rain follows such days 30% of the
time. But our ‘unpredictability’ inference could not be drawn from such
predictions. For, granted what we do know about weather predicting, we
know that in regions where it rains on 30% of the days of the year, it is
possible to be right more than 30% of the time in making the prediction



84 CHAPTER HI

‘it will rain tomorrow’, if present meteorological knowledge is utilized to
‘select’ the days on which this prediction is made. But this is just what we
have reason to think can’t be done to ‘beat’ good weather forecasts such
as that the chance of rain tomorrow is 30%. Roughly, on occasions when
forecasters make this prediction, we could not use the knowledge available
at the time of forecasting to select from among those occasions ones on
which to make the ‘it will rain tomorrow’ forecast, and reasonably expect
to be right more than 30% of the time.12

Observe that the unpredictability inference which can be made from
probabilistic weather forecasts is much more strongly justified from
probabilistic statements about random occurrences: e.g., that the proba-
bility that the points will total four when two dice are rolled is 1 in 12,
We have centuries of experience with dice and similar apparatus to
justify our concluding that no matter how we try, there is no ‘practical’
way of making predictions of the form ‘the points on the dice will total
four’” which will be right in the long run more (or less) than one time in
twelve.13

We now want to give a plausible argument to the effect that if the
‘unpredictability inference’ from the weather forecast ‘309, probability of
rain tomorrow’ is warranted, then persons cannot do better in the long
run than base their decisions on this estimate, assuming these decisions
to be made on the basis of information available to the forecasters. Let us
consider solely decisions made on occasions when this forecast is made,
which are based on estimates of the likelihood or rain (which need not
agree with the weather bureau’s) and which issue in actions whose good
or bad results depend only on whether or not it rains. To simplify, suppose
We restrict attention to decisions as to whether or not a person (the
decision maker) will wear his raincoat on leaving the house for the day,
as previously discussed. To vastly oversimplify, suppose that the utilities
for the decision maker of the possible results of his decision are always
equal to those described in Section 3, and that, though his estimates of the
probability of rain vary from day to day, they are always, absurdly, based
only on information available to the weather bureau at the time it makes
its forecasts. Recall that the utilities of the four possible results were:
(1) —5 if the coat is worn and it rains, (2) ~2 if the coat is worn and it
doesn’t rain, (3) —20 if the coat is not worn and it rains, and (4) +5if the
coat is not worn and it doesn’t rain.
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The first thing to observe is that for the decision maker to adopt the
alternative of wearing the coat is for him to ‘act as though’ he predicted
rain. Wearing the coat is the ‘right’ alternative to adopt in the event of
rain, since the result of adopting it in that event has a higher utility
(namely —2) than the result of not adopting it (which is —20). It is
extremely plausible, then, that any limitations on how often the decision
maker could correctly make the prediction ‘it will rain’ on a given set of
occasions would apply equally to how often he would be ‘right’ on any
subset of those occasions on which he would decide to wear the rain-
coat.

Now suppose that there are a total of N occasions on which the weather
bureau makes the forecast ‘the probability of rain is 30%’, and that on &,
of these the decision maker decides to wear his raincoat. Assuming that
the weather bureau’s prediction is ‘best’, it follows that the decision
maker’s decision to wear the raincoat would be right on only 30% of the
N occasions on which he wore the raincoat. This decision would be
wrong, therefore, on 709 of the N, occasions of wearing the raincoat. By
parallel reasoning, out of a total of N,=N-— N, occasions on which it is
decided not to wear the raincoat, this decision will be the right one to
make on 709 of the N, occasions on which it is made, and the wrong one
to make on 309 of those occasions. Assuming as we have done that the
utility of the result of deciding ‘rightly’ to wear the coat is — 5 (this being
the utility of the result of wearing the coat in the event of rain) and that
the utilities of the other results, right or wrong, are as given, the total
‘net utility’ of the result of wearing the coat N, times and leaving it behind
N, times out of the total of N occasions on which the weather bureau’s
forecast is a 309, probability of rain will be:

~5x3N; +—-2x.TN; +—20 x 3N, + 5 x .IN,
which readily simplifies to:
— 29Ny + —2.5N,.

It is evident, since the total N=N, + N, is fixed, that the total net utility
to the decision maker will be a maximum if he never wears the coat on any
of the N occasions, so that N, =0 and N,=N.

Whether the decision maker actually does wear his raincoat on any of
the N occasions on which the weather bureau predicts a 30% probability
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of rain depends on the probabilities which the decision maker estimates
for rain on those days (which may vary from day to day). If his estimate of
the probability of rain on a given day is p, then the expected utility of the
alternative of taking the raincoat is —5p+ —2(1-p), and the expected
utility of not taking the raincoat is —20p +5(1—p). It follows by simple
algebra that the first expected utility is greater than the second, so the
decision maker will take the raincoat, if p is greater than .316, while the
expected utility of leaving the raincoat is the larger, and the raincoat will
not be worn, if p is less than .316. Hence, if there is any occasion at all on
which the decision maker estimates the probability of rain at more than
.316, he will wear his coat, with the result that his net utility will be lower
than the maximum attainable resulting from these decisions made on the
N occasions.

The foregoing argument shows that if the decision maker ever estimates
probabilities of rain as significantly more than 302 (in particular more
than .316) when the weather bureau forecasts a 309 probability of rain,
he will end up less well off “in the long run’ than if he does not. An
entirely parallel argument shows that he will wind up less well off then he
could be if he ever estimates probabilities of rain at significantly less than
30% on occasions when the weather bureau forecasts a 30% chance of
rain. Hence the decision maker is best off estimating the chances of rain
as 30% on those occasions.

Before turning to the possible implications which the foregoing has for
soundness considerations, let us comment briefly on the aim of ‘maxi-
mizing long term gains® as a motive for decision and action, which our
argument suggests may partly explain why people should want to be
‘right’ in their conclusions about probabilities. There is no doubt that an
adequate theory of behavior would have to take such motives into account,
though it is probably an empirical matter how important they are. For
instance, even the dog’s behavior in the digging example might more
plausibly be explained not as that of finding a bone on that particular
occasion (as though that were all that mattered to the dog) but rather as
part of a ‘program of action designed to yield him a sufficient number of
bones’ (assuming him to be dependent on bones for food).

Itis evident that though the aim of securing long run gains may motivate
the desire to know ‘true probabilities’ it does not account for all of
people’s practical concern with probabilities. For example, in life and
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death cases where all that matters is the outcome of a single decision,
people do seek information as to the probabilities involved, and we feel
that they are ‘best advised’ to do so. Thus, a person suffering from a
possibly mortal illness which might be cured by a new medicine which in
turn is known to occasionally have lethal side effects will want to know
what the chances of the medicine’s curing him are, what the chances are of
his recovering without taking the medicine, and what the chances are of
its having its unfortunate side effects, before he makes up his mind. The
problem which we haven’t been able to solve here is the theoretical one of
explaining why persons should want to know the true probabilities in
theses cases.14

A final remark is in order concerning our equating the ‘net utility’ of
the results of a long series of decisions with the sum of the utilities of the
results of the individual decisions of the series. This assumption is suspect
for two reasons, first because it presupposes that we can give a clear sense
to even comparing the utilities of the results of two different decisions, and
second because there are well known examples which show that the
arithmetic summation assumption is sometimes highly counterintuitive.
In fact, the expected utility theory was developed in large part in order to
avoid both of the foregoing difficulties, and we are here using it in a way
which leads right back to them. If our earlier comment that an adequate
theory of behavior must consider the effect on behavior of long range
goals is right, then it would follow that an adequate theory of behavior
cannot avoid dealing with the problem of relating long range and short
range values. On the other hand, it is extremely probable that an adequate
theory will show that this relation is much more complicated than we
have presently assumed it to be.

Now we want to see what light our partial explanation of the desirability
of being right in estimating probabilities of factual propositions like it
will rain tomorrow’ throws on the question as to the relation between
truth-conditional and probabilistic soundness for inferences involving
only propositions of this kind. It is to be noted immediately that the
partial explanation gives a motive for wanting to arrive at factual con-
clusions only under circumstances when they are objectively probable,
and this in turn gives a motive for wanting to assure the probabilistic
soundness of inferences issuing in such conclusions. For instance, if the
conclusion ‘it will rain tomorrow’ is arrived at and acted on only under
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circumstances in which its objective probability is 95%, it would follow
that these actions were ‘the best under the circumstances’ 95% of the
time — because rain actually would follow 95% of the time.15

That truth-conditional soundness insures probabilistic soundness for
inferences involving only factual propositions can be seen by considering
the inference:

It will either rain or snow tomorrow. It will not snow to-
morrow. Therefore it will rain tomorrow.

Let us assume the truth-conditional soundness of the inference, hence
that on any occasions in which the predictions ‘it will either rain or Snow
tomorrow’ and ‘it will not snow tomorrow’ proved correct (because it
either rained or snowed, but it didn’t snow the following day), the con-
clusion ‘it will rain tomorrow’ would prove correct. Now suppose that on
some occasion both premises had probabilities of 95%; under those
circumstances it would neither rain nor snow the following day 5% of the
time, and also it would snow the following day only 5% of the time.
Hence, under those circumstances at most 10% of the time either it would
neither rain nor snow, or it would snow — i.e., under those circumstances
one or other of the ‘premise predictions’ would be mistaken at
most 1095 of the time. Hence both premise predictions would be right
at least 909 of the time, and so the conclusion would be right at least
907, of the time. Thus, if the premises have objective probabilities of 95%,
then the conclusion has a probability of at least 90%, and we have
already seen that this is the best that truth-conditional soundness can
guarantee.

Observe that the foregoing argument made essential use of the connec-
tion between ‘objective probabilities’ and best attainable frequencies of
correct predictability. This is precisely what cannot be shown (at any rate
in any simple way) in the case of conditionals and objective estimates of
their probabilities. This is the subject of the following three sections.

5. ACTING ON BELIEFS ABOUT THE RESULTS
OF POSSIBLE ACTIONs10

The conclusions expressible as conditionals of concern in this section are
ones as to what result will follow if a particular alfernative is adopted by
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the person arriving at the conclusion. Examples of such result beliefs are:

If I take this medicine, my headache will go away.
and
If I eat those mushrooms, I will be poisoned.

It is intuitively obvious that beliefs of this type very strongly influence
behavior, and the most immediately plausible way to describe this in-
fluence is to say that a person believing ‘If I adopt alternative 4 then re-
sult R will follow’ adopts 4 if he wants R, and does not adopt 4 if he does
not want R. For instance, the man wanting to get rid of his headache and
thinking that taking a particular medicine will do that takes the medicine,
while the man not wanting to be poisoned who thinks he will be poisoned
if he eats certain mushrooms does not eat the mushrooms. Ascribing these
motives (to arrive at or avoid result R) and these beliefs (that if 4 is
adopted R will follow) would also serve to explain the behavior (of
adopting or not adopting 4) in a manner analogous to that in which
Shwayder supposes the ascription of motive and belief to explain
behavior.

Somewhat closer examination of the possible explanatory function of
the ascription of motive and belief shows that the simple way of describing
the influence of motives and result beliefs on action above is incomplete in
an essential respect. It would not do to explain a person’s taking a partic-
ular medicine to cite solely his aim of getting rid of his headache and his
belief that taking the medicine would have this desired result, if it were
not tacitly supposed that the person taking the medicine also thought that
if he did not take the medicine, his headache would not go away (or at any
rate, would not go away so quickly). Similarly, in explaining why someone
does not eat certain mushrooms on the grounds of that person’s belief
that he will be poisoned if he eats them, it is tacitly assumed that the
person thinks that he will not be poisoned if he doesn’t eat the mushrooms.
Making these tacitly assumed beliefs explicit leads to the following rather
more complicated picture of the influence of sets of result beliefs on
behavior. A person is supposed to decide which of mutually exclusive and
exhaustive alternatives 4y, ..., 4, to adopt, and for each alternative 4; to
hold a belief to the effect that if 4; is adopted, then result R, will follow.
He then adopts whichever alternative 4; has the most desirable antici-
pated result R,. For instance, in the mushroom example, the man ‘adopts
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the alternative’ of not eating the mushrooms because he thinks that the
result of that (not to be poisoned) is better than the result of adopting the
other alternative (which he thinks would be to be poisoned).

Given the great practical importance of result beliefs, it would seem as
in the case of conclusions about probabilities that people should have the
strongest of motives for wanting to be ‘right’ in them. However, it turns
out to be difficult to characterize a sense of ‘right’ and ‘wrong’ applicable
to such conclusions which can be closely connected to people’s practical
interests in reasoning which issues in them, in that they would generally be
better off basing their decisions on result beliefs which would be ‘right’ in
this sense than in basing them on ones which were ‘wrong’. Observe first
that the fact that the consequence beliefs on which decisions are based
ultimately turn out to be ‘materially true’ by no means guarantees that
these conclusions are the ‘best’ to arrive at and that the decision maker
would not have done better to arrive at other conclusions and to act
differently in consequence. Suppose that the mushrooms which the man
avoided eating because he thought that if he did so he would be poisoned
had been non-poisonous, and in fact delicious. Not eating the mushrooms
‘made’ his belief ‘if I eat the mushrooms I will be poisoned’ materially
true, and therefore he was ‘right’ in the sense of holding a belief which was
materially true. But it is evident that if the man had not arrived at this
conclusion he would in fact have made a decision with better consequences
— namely to eat the delicious and non-poisonous mushrooms. He can
hardly therefore regard the reasoning which led him to the conclusion “if
I eat those mushrooms I will be poisoned” as satisfactory simply because
the conclusion he arrived at was materially true. This of course only con-
firms our strong intuitive feeling that merely turning out to be materially
true does not prove the rightness of the belief if I eat those mushrooms I
will be poisoned’.17

Trying to explain what more in the way of ‘rightness’ should be wanted
of consequence conclusions beyond that they should be materially true
seems to lead us inevitably to counterfactuals with all of their attendant
problems. For example, we are most apt to describe the man in the mush-
room example as having been wrong in thinking ‘If I eat these mushrooms
I will be poisoned’ (when the mushrooms are actually non-poisonous) by
saying that in fact, he would not have been poisoned if he had eaten the
mushrooms.!® It is not to be thought that we can easily avoid the counter-
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factnal and attach a ‘factual’ sense to an ‘adequate’ concept of rightness or
wrongness as it applies to conditionals. The reason is that it appears to be
necessary to use the counterfactual even to define what the ‘best’ alterna-
tive to adopt under certain circumstances is, which would in turn permit
us to characterize ‘right’ consequence conclusions as being ones which we
should want to arrive at since basing our decisions on them leads to adopt-
ing the best alternatives. Thus, not eating the mushrooms in the example
was characterized as not being the best alternative to adopt (in the cir-
cumstance in which the mushrooms are in fact non-poisonous), since
eating the mushrooms would have been pleasurable, and would have had
no harmtul after-effects.

Assuming that the problem of characterizing ‘best’ consequence con-
clusions to come to brings us inevitably to the counterfactual, we shall not
pursue this subject further lélrle, particularly in view of the fact that this
difficulty can be avoided in dealing with the problem of characterizing
‘best’ conclusions to arrive at about the probabilities of such propositions.
It is worth noting by way of conclusion, however, that taking seriously the
fact that ‘best’ conclusions and actions are fundamentally described in
counterfactual terms, leads us to see that certain non-necessary ‘causal’
counterfactual assumptions are presupposed even in our earlier account of
why it is best to arrive at and act on correct conclusions about matters of
fact. For instance, in the example of the man deciding whether to wear his
raincoat, we have assumed that the ‘right’ and ‘best’ conclusion for him to
arrive at in circumstances in which rain actually does ensue is that it will
rain. Acting on this by taking the raincoat was said to be best because the
result of adopting the other alternative — to leave the raincoat at home —
would have been less desirable under the circumstances than the result of
taking the coat. But this claim really rests on the assumption that taking
the coat has no influence on the weather, and in particular that this action
is not what ‘brings on’ the rain. If, absurdly, carrying the coat had been
what brought on the rain, then it was correct to conclude in advance that
it would rain, but it no longer follows that acting on this conclusion by
carrying the raincoat has a better result than would have followed if the
opposite conclusion had been arrived at and the coat left behind. It may
still be possible in the case in which conclusions lead to actions which
influence the events to which the conclusions pertain, to give a coherent
description of what ‘best’ and ‘right’ conclusions to arrive at are, but we
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may plausibly suppose that this description will involve counterfactuals
in an essential way, and we will be back in the difficulties to which
we are led in attempting to characterize ‘best conclusions’ about result
propositions.

Taking into account the possibility of action influencing the ‘contin-
gencies’ entering into the simple expected utility theory outlined in
Section 3 will be seen to call into question our characterization of
‘luckiest’ probability estimates. This emerges when we consider this theory
as a special case of a theory of decision and action based on estimates of
the probabilities of possible results of actions, which we now take up.

6. ACTING ON ESTIMATES OF THE PROBABILITIES OF
THE POSSIBLE CONSEQUENCES OF ACTIONS

If the man in our mushroom example had only regarded it as ‘not improb-
able’ that he would be poisoned if he ate the mushrooms, this would no
doubt have deterred him from eating them fully as effectively as if he had
believed ‘if I eat these mushrooms I will be poisoned’ simpliciter. A natural
and obvious simultaneous generalization of the expected utility theory and
of our theory of action on sets of result beliefs provides an elegant
description of the effect on behavior of estimates as to the probabilities of
certain results following on the adoption of various alternatives. Where
persons regard more than one result as possible following the adoption of
a particular alternative, it can be supposed that they attach probabilities
to the occurrence of these results if the alternative is adopted, and also
utilities. These probabilities and utilities then permit the calculation of
the expected utility of adopting the alternative, according to the rule
described in Section 3. Finally, it is natural to assume that the alternative
adopted is the one with the highest expected utility. For instance, in the
mushroom example we may suppose that the person thinks there is one
chance in 100 that he will be poisoned if he eats the mushrooms and that
he attaches a utility of —10,000 to this, while he thinks that there are 99
chances in 100 that he won’t be poisoned, and the utility of this is + 10.
The expected utility of eating the mushrooms is then equal to .01 x
x =10,000+.99 x 10= —90.1. Assuming this value to be lower than the
expected utility of not eating the mushrooms, the person will not eat the
mushrooms.
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Generalizing from the mushroom example, the influence of beliefs
about the probabilities of possible results following on the adoption of
various alternatives can be described as follows. It is assumed that one of
the mutually exclusive and exhaustive alternatives A, ..., A, must be
adopted. For each alternative 4,, instead of supposing that there is a
unique result R; which it is expected would follow from it, there are n;
possible results Ry, ..., R, which are thought might follow if 4, is
adopted. Each of these is regarded as having a probability of following if
A, is adopted, and these conditional probabilities can therefore be written
as p(4;= Ry), ..., p(4;= R,,). For fixed 4; the foregoing probabilities
can be assumed to sum to 1, corresponding to the fact that Ry, ..., Ry,
are regarded as mutually exclusive and exhaustive possible results which
could follow adopting 4;. Also, a numerical utility is supposed to be at-
tached to result R;;’s following on the adoption of 4;, and this too can be
represented as a conditional utility, u(4;= R;;). The expected utility of
adopting 4;, which be denoted u(4,), is then simply taken to be the
sum of the products p(4;= R;;)xu(4,=R,;) with j running from 1
to n;.

Before touching on certain conceptual problems connected with the
foregoing description of the influence of ‘result probability estimates’ on
behavior, let us note how both the expected utility theory of Section 3 and
the representation of action on the basis of consequence beliefs described
in Section 4 can be regarded as special cases of the present ‘model’. The
case in which the decision maker regards each possible alternative as
having a unique result R; is essentially that in which for each A, there is
one possible result Ry, in the set Ry, ..., Ry, such that p(4;=R;;) is 1,
while p(4;=>R;;) is 0 for all j different from j;. In this case the expected
utility u(4,) reduces just to the conditional utility u(4;= R,;,), and there-
fore the decision maker adopts whichever alternative 4; whose expected
result R;;, has the highest value.

The expected utility model of Section 3 can be regarded as the special
case in which: (1) the conditional probabilities p(4;=> R,;) are computable
from ‘subconditional probabilities’ of R,;’s following if 4, is adopted and
a contingency C, arises, and (2) the contingencies C; are ‘independent’ of
the alternative adopted. Briefly summarized, the argument is as follows.
Suppose that there are m possible ‘contingencies’ C,, ..., C,. It follows
from the pure axioms of conditional probability that p(4;=>R; ;) is equal
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to the sum of the products p(4;=C,)xp(4; & C,=R;)) for k running
from 1 to m. If the contingencies C, are regarded as ‘causally independent’
of the alternative adopted 4;, then we can write p(4;=>C,)=p(C,). If the
alternative 4; and the contingency C, are regarded as uniquely deter-
mining the result R,;, this means that for each 4; and C, there is a2 unique
result R(4;, C;) such that p(4; & Cy=R;)) is 1 if R,; is R(4;, C;), and
P(4; & C,= R;)) is 0 otherwise. It follows from these assumptions that
the expected utility u(4;) is equal to the sum of the products p(C;)x
u(4,;=R(4;, C,)). Note that the utility u(4,=R(4,, Cy)) is really the
same as the utility u(R(4;, C;)) in the earlier model, since in that model
this was assumed to represent the value of the result R(4,, C;) following
if A; was adopted and C, occurred.

Observe the light in which our present generalization puts our earlier
representation of the result R(4;, C}) as a function of the alternative 4,
adopted and the contingency C, arising. R(4,;, C,) is now seen to be the
result which the decision maker thinks is certain will follow if 4; is
adopted and C, occurs. But the fact that he thinks this does not mean that
R(4;, C;) must follow — he could be mistaken. In fact this possibility is
very real in our earlier representation of ‘getting soaked’ as the result of
leaving the raincoat in the event of rain. The man could be mistaken about
that since it is certainly possible to avoid being soaked even when it rains
and the coat is left behind. If the uncertainties as to the results of adopting
alternatives in various contingencies which are tacit in the simple expected
utility model are made explicit, we are in fact led right back to the more
general expected utility picture formulated here. Furthermore making
these uncertainties explicit and allowing for the possibility of error in
estimating the result of adopting an alternative in some contingency calls
into question our characterization of the ‘lucky’ probability estimate as
being that which assigns probability 1 to the contingency ultimately oc-
curring. The following example illustrates this.

Suppose a miner prospecting for silver to be considering whether to dig
in a particular location. He estimates that if he digs and there is actually
silver to be found, he will havé a ‘good’ result, while if he digs and silver
is not to be found, he will have a poor one (he will have tired himself out
and wasted his efforts). He would prefer not to dig rather than dig
fruitlessly. His decision whether to dig is therefore based on his estimate
of the probability of there being silver to be found. Now, suppose that
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there actually isn’t silver to be found, but there is gold. The miner would
not be luckiest to be ‘right’ in estimating silver as certain not to be found
(which is what we have previously taken to be the ‘lucky’ probability
estimate under the circumstances) since this would lead him not to dig,
although digging would actually have led him to the gold. What this
example shows is that regarding the ‘right’ probability estimate as the
Iucky one really presupposes that the results of adopting alternatives in
various contingencies are correctly estimated. In particular we must
assume that the miner is right in estimating that the result of digging and
not finding silver will be ‘poor’. The possibility of being mistaken in these
estimates is left out of account where they are represented as ‘givens’
(which is how they are construed in the expected utility model of Section 3).
When this possibility is taken into account we are led to difficulty in
defining ‘luckiest’” probability estimates analogous to those which arise in
trying to characterize ‘best’ conclusions about the consequences of
adopting alternatives, which were noted in the previous section. For this
reason we shall not even try to define a generalization of our earlier
‘tucky’ probability estimates applicable to the present model, when we
come to consider what ‘best’ consequence probability estimates are.
Before turning to that we conclude with brief remarks on conceptual
problems arising in connection with the present generalized expected
utility theory.

The basic conceptual problem which must be solved if our generalized
theory of decision based on consequence probability estimates is to be
given a clear sense (which would in turn permit it to be evaluated) is to
specify the meanings of the numerical utilities and probability estimates
entering into the definition of expected utility. This is the measurement
problem, which we asserted in Section 3 to be solvable in a satisfactory
way within the context of the ‘special expected utility theory’, though we
did not discuss that solution. One thing to be observed here is that the
measurement problem cannot be solved within the generalized theory in
the same way that it can in the special theory though it turns out a solu-
tion of the same general type is possible. The solution in the context of the
special theory consists in attaching a ‘behavioral’ sense to numerical utili-
ties and probabilities, by specifying what purely ‘qualitative’ behavior by
people can be interpreted as ‘acting as though’ they attached particular
probabilities to propositions and numerical utilities to possible results.
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This behavioral interpretation of probability and utility, however, actu-
ally is based on the assumption that the postulates of the special expected
utility theory which relate probability and utility to decision are valid; in
other words, the assumptions of the special theory are used as partial im-
plicit definitions of its numerical concepts, and therefore the theory itself is
interpreted as postulating that people act ‘as though’ they attached numer-
ical probabilities and utilities to propositions and results, in their decision-
making behavior. But, granted that the assumptions of the special theory
are used as implicit definitions of utility and estimated probability, it fol-
lows that a theory which does not make these same assumptions, and in
fact makes weaker ones, cannot necessarily use these as implicit definitions
in the same way that the special theory does. In fact, this is the case with
our generalized theory. It can be shown to be logically impossible to define
utility and probability implicitly in terms of the assumptions of our
general theory, purely in terms of preference and choice, as is done in the
special theory.1®

The ‘implicit definition” approach can be used in the present context to
give behavioral interpretations to numerical utility and estimated probabil-
ity, provided ‘behavior’ is interpreted to include not only preference
(either between alternatives, or between their possible results) but gualita-
tive likelihood comparisons of the form ‘if 4, is adopted, then R;, is more
likely to follow than R;,’.20 Of course, once the behavioral reduction of
utility and estimated probability has been accomplished it still remains to
be shown that persons do have good reason to behave in accord with the
assumptions of the general theory as thus interpreted, at least to a first
approximation. We shall not consider this problem in its usual form here
(which is usually construed as that of deriving a ‘representation theorem’
from suitable ‘axioms of rationality’ — see, e.g., Krantz ef al. [38]), since
we will approach the subject of ‘justification’ from a different direction in
the following section. What we want to show there is that, provided
persons want to maximize long run gains, as measured by sums of individ-
ual utilities, they are ‘best off” to estimate and act on consequence probabil-
ities which are ‘objective’. In arguing for this, however, we don’t want to
assume that the utilities involved are implicitly defined by the postulates
of our generalized theory, because those postulates assume, in effect, the
validity of the ratio representation of the probabilities of conditionals, and
it is the correctness of this representation (in the sense that it is desirable
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to arrive at probability estimates conforming to it) which we now propose
to argue for.

7. BEST ESTIMATES OF THE PROBABILITIES OF
THE POSSIBLE RESULTS OF ACTIONS

Suppose a decision maker to make a long series of decisions in which on
each occasion he must adopt one of alternatives 4, ..., 4, and where the
possible results which could follow from adopting A, are always among
Ry, ..., Ry, Suppose for simplicity’s sake that the value to the decision
maker of result R;;’s following adopting 4, is always u(4; = R;;), and that
in a long series of results, the net value is equal to the sum of the values of
the individual results in the series. Finally, suppose that decisions are made
under circumstances in which, no matter how the decision maker ‘selects’
the occasions on which to adopt any particular alternative 4;, result
Ry; will follow on adopting 4; a proportion f(4;, R;;) of the times in

hich 4; is adopted. It is easily seen that under these circumstances, if
in a long series of N of these decisions each alternative A, is adopted
N, times, the net utility of the results in the series must be close to the
double sum:

Ni[f (4y, Ryy) u(A; = Ryy) +--- +f(Ay, Ryn) u(4, =Ry,,)]
+...
Nn [f (Ans Rnl) u(A,,=>Rn1) +oe +f(A,,, R'ln) u(A"=R""n)]’

Assuming that the decision maker wants to maximize his long term gains,
he will always choose that alternative A, for which the value

S (4 Ryy) u(4;= Ry) ++-+ £ (4, R;,) u(4;=Ry)

is a maximum. His net gain will then be N times this value, where N is the
total number of occasions on which the decision is made.

What the foregoing tends to show is that in situations in which ‘objec-
tive long run frequency constraints’ exist of the type postulated above,
persons are best off in the long run always to adopt alternatives with
highest expected utilities, where expected utilities are computed in terms
of these frequencies. As the frequencies f (4}, R;)) necessarily satisfy the
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laws of the ratio representation, it follows that in making decisions in the
type of situation described, persons are best off arriving at estimates of
the probabilities of the possible consequences of alternatives which con-
form to the ratio representation, and then adopting alternatives with
highest expected utilities as computed in terms of these probabilities.
Though we should want to inquire how ‘typical’ the sort of decision
making situation considered here is, we have now found a motive for
wanting to reach ‘right’ conclusions about the probabilities of the possible
consequences of actions, where these ‘true probabilities” satisfy the ratio
representation. We also have a motive for wanting to reach ‘simple
conditional conclusions’ about the results of adopting alternatives only
when they have high ratio probabilities, and therefore for wanting to
assure the probabilistic soundness of inferences with such conditionals as
conclusions. In particular, assuming people act on their ‘simple result
conclusions’ in the way depicted in Section 5, they will arrive at best
results in the long run if they conctude ‘if I adopt 4, then R; will follow’
only under circumstances when the ‘objective’ ratio probab/ility is high.

Note in conclusion the light which the foregoing throws on the connec-
tion between ‘best’ estimates of the probability of ‘if I adopt 4, then R;
will follow’ and possible truth-value ascriptions to this conditional. This
rational estimate is equal to the frequency with which R; follows the
adoption of 4; under circumstances where it is not possible to ‘be clever’
and get result R; more or less often in the long run in circumstances of
that type. This frequency is therefore independent of the possible truth or
falsity of conditional utterances of the form ‘if I adopt 4, then R, will
follow’ under conditions in which 4; is not adopted. Thus, the probability
of the conditional is not to be equated with the frequency with which the
conditional ‘if I adopt 4; then R; will follow’ proves true (in some sense
of ‘true’) on all occasions on which this assertion might be made, but
rather only with the proportion of times the consequent would prove true
on occasions when the conditional is asserted and its antecedent proves
true. This confirms, then, the result arrived at in Section 1.1 that, however
we might ascribe truth-conditions to conditionals, we cannot in general
expect that their probabilities can be equated with their probabilities of
having the ascribed truth-value ‘true’.
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NOTES

1 Though it is beside our present concerns, it seems to me that Dummett’s contention
is obviously wrong if taken in full generality (unless the word ‘statement’ is taken in a
special technical sense) and to the extent it is right in limited generality, this is to be ex-
plained in terms of the desirability of reaching true conclusions ‘for oneself’, and not
only in what one passes on to others. Note that while Dummett’s attempt to analyze
truth in terms of statement-making involves essential altruistic assumptions (in com-
mon with the sincerity conditions of speech acts of more general kinds, to which Dum-
mett’s claim is obviously closely connected), our approach does not require this.

2 A somewhat more exact description of the action would be to say it was done in the
belief that it was probable that the friend’s plane would arrive close to 2 p.m. This
complication will be taken up in the following section.

3 Or at least that the action had a ‘reasonable chance’ of accomplishing the purpose;
this modification is easily accomodated in the probabilistic generalization to follow.
4 Perhaps the recent work of Zadeh |62], Goguen [21] and other of Zadeh’s associates
on the logic of ‘fuzzy’ or ‘inexact’ concepts can be regarded as a step in this direction.
Zadeh and Bellman [63] have taken the further step of relating ‘fuzzy conclusions’ to
decision and action in a way which might make it possible to ascribe motives for
wanting to be ‘fuzzily right’.

5 1 have taken some very limited steps towards developing a theory of that kind of
soundness, using procedures somewhat analogous to those described in Chapters I and
11 to determine whether the fact that all generalizations of a set of ‘premise generaliza-
tions’ admit only a small proportion of exceptions insures that a conclusion of the
same form also only admits a small proportion of exceptions. The results appear in [4].
See also Carlstrom [10].

8 The classical references are de Finetti [13], Ramsey [45], Savage ([47], Chapter 1) and
von Neumann and Morgenstern ([61], Chapter 1). A lucid critical discussion appears
in Luce and Raiffa ([42], Chapter 2), and the theory has received a great deal of atten-
tion in the literatures of statistical decision theory, and of behavioral sciences such as
experimental psychology and economics. Philosophical literature, connecting this with
the foundations of probability, is also extensive. The present formulation differs
slightly from standard formulations, by way of emphasizing the fact that utilities apply
to expected results of adopting alternatives under various circumstances. That these
expectations themselves are subject to some uncertainty will prove important when we
come to generalize the present considerations in such a way as to account for acting
on the basis of estimated conditional probabilites.

7 This oversimplifies, of course, since the man would also consider how hard it might
rain, and for how long. These refinements can be taken into account without compli-
cating the theory in an essential way.

8 The justification of this rule is clearly intimately bound up with the problem of de-
fining or measuring subjective probabilities and utilities, for if the method of measuring
the latter were to be varied, it would follow that expected utilities, which should be
maximized in choosing among alternatives, could not be computed according to the
formula here described. The question of justification will, however, arise in a new guise
in the following section.

9 Dealing with the issues of concern in this section compels us to confront the highly
controversial problem of the ‘meaning of probability’. The very limited ‘solution’ I
shall propose to this problem will be seen to be highly unorthodox, and is certainly
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not to be attributed to proponents of the expected utility theory to which it is closely
bound. It will be seen in fact that it is necessary to give a somewhat unorthodox inter-
pretation to some of the ‘primitive concepts’ of the latter theory in order to make pos-
sible an explanation as to why one should want to reach ‘correct’ conclusions about
probabilities, assuming he acts on these conclusions in accord with the expected
utility theory.

10 This conclusion must be modified when we come to consider the possibility that
people may be mistaken in their conclusions as to what the results of adopting particular
alternatives will be in different contingencies. An example to be discussed later of a
miner digging for silver and finding gold instead can be seen as a case in which acting
on mistaken opinions actually leads to better results than would have followed if the
alternative ‘directed’ by the right opinion had been adopted in the circumstances. This
sort of situation cannot be accomodated within the expected utility framework previ-
ously described, but can be within the conditional generalization to be discussed in
Section 6.

1 Tt is an interesting problem to devise a rational measure of this kind of accuracy.
One such, which is essentially an adaptation to the familiar negentropy measure of
statistical information theory, has been used by Joseph Hanna [27], as a device for as-
sessing the ‘goodness’ of predictions in probabilistic theories of learning.

12 This is not to say that we couldn’t do better than the professionals using information
not available to them. For instance, looking at the skies on the following morning might
give us practical certainty that it was going to rain that day, and in this case we would
be better advised to rely on that information than we would be to act on the basis of
the forecast probabilities. “Up to the minute’ forecasts are generally to be preferred.
But information as to tomorrow’s skies is precisely what is not available to forecasters
making predictions the evening before, and it must also be remembered that action on
expectations as to contingencies like the weather must be undertaken at some time prior
to the occurrence of the events which the expectations relate to.

Two further comments on our somewhat tortuous second inference from the prob-
abilistic weather prediction are worth making. One is that the ‘information available’
to the forecasters, while not including the look of the skies the next morning, does in-
clude items of ‘potential information’ which may not actually be used - for instance
pronouncements previously made by astrologers which the scientific weather forecasters
could consult if they chose to. That such potential items are not used shows that there
is good reason to think that they would be useless.

The second comment is that we do not exclude the possibility that ways of forecasting
may be developed which will ‘beat’ present methods, either relying on kinds of informa-
tion not practically available to forecasters now (perhaps transmitted from improved
weather satellites), or else by better analyzing data already available to forecasters. All
that we have a right to conclude from the weather bureau’s forecast is that among
presently known ways of predicting (which include uneducated guesses after looking
at the sky, merely looking at the barometer, and even less scientific methods), none can
reasonably be expected to be better than the weather bureau’s.

13 This is the ‘nonexistence of a gambling system’ condition, which has been noted
frequently as an essential feature of random processes. This requirement is not meant
to exclude the possibility of being right more often than by chance, making predictions
on the outcomes of such processes based on an exact specification of the initial condi-
tions of the process: e.g., knowing the precise velocities, directions, weights, etc. of the
dice when rolled would theoretically enable us to predict the result of the roll (leaving
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aside quantum uncertainties anyway). But this ‘initial condition’ information is not
practically available.

Another complication which we have neglected is the fact that theoretical statements
about the probabilities of random phenomena are usually formulated as generalizations
and not as propositions about singular occurrences - e.g., ‘the chance of rolling points
totalling four with two dice is 1 in 12", It is to be conjectured that it is the fact that
theoretical statements about probabilities are nearly always generalizations which has
led the ‘relative frequency’ probability theorists to the view that probability statements
are never, if they are legitimate, about particular occurrences.

14 This is connected with what seems to me to be an essential lack in Strawson’s well
known attempt to ‘dissolve’ the problem of induction, arguing in effect that it is a mat-
ter of what we mean by ‘rational’ that to have good reasons for certain opinions is to
have good inductive support for them ([55], pp. 261-262). What Strawson does not
tell us is why we should wanf to hold opinions which are ‘rational’ in his sense. We
are again back at the basic difference in approach, between regarding issues of logic
as matters to be settled by conceptual analysis (e.g., as to the meaning of the concept
of rationality), and regarding them as ones to be studied by considering why persons
should want to reach conclusions of one or another kind, where such words as ‘ratio-
nality’ may only very vaguely and crudely describe what is wanted.

15 That rain would follow 952 of the time can be inferred from the fact that under
these circumstances (where the objective probability of rain is 95 %), it is impossible to
‘outguess’ the objective probabilities, and make the prediction ‘it will rain’ correctly
more or less than 95 95 of the time. It is necessary to use the assumed unpredictability in
this case to assure that the reasoner will be right in his prediction 95% of the time he
predicts rain when the true probability of rain is 95 %. Otherwise the reasoner might be
assumed able to ‘alter the odds® and predict rain correctly either more or less than 95 %
of the time when he predicted rain under circumstances in which the true probability
of rain is 95%.

18 Tam indebted to Professor Donald Davidson for drawing my attention to the type of
conclusion expressible as a conditional to be discussed in this section, which, among all
conclusions of conditional form, probably have the strongest and most immediate in-
fluence on behavior. Conclusions about the resuits of possible actions of ones own
(what we call a result proposition) might be considered to be too special a class of
belief expressible as a conditional to justify drawing inferences about conditionals
in general from this special case; Dummett [16], for instance, would appear to think so
since he explicitly excludes conditionals whose ‘antecedents are in the speaker’s power”
from his considerations. It would be very odd, however, if the special class differed
from conditionals of other sorts so far as their truth-conditions and probabilities were
concerned. In any case this particular kind of belief is of sufficient importance to Jjustify
detailed discussion in its own right.

In my earlier articles [1, 2] I had attempted to get at the pragmatic consequences of
holding beliefs expressible as conditionals by regarding conditional befs as actions
‘based on’ these beliefs. While there is probably something right about this, bets in
general involve such complicated linguistic behavior (and rely on conventions regarding
their settlement which are so difficult to specify precisely) that it has seemed better to
leave them out of account entirely here. The type of action on the basis of sets of conse-
quence beliefs which we shall consider here is in general non-linguistic, and we may
imagine such acts performed by animals.

17 There is a special case in which the fact that all beliefs of a ‘consequence belief set’
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are materially true is necessary and sufficient for actions based on them to have desi-
rable resuits. This is that in which alternatives are evaluated solely in regard to whether
they will result in some single purpose being achieved, so all consequence beliefs are of
the form ‘if I adopt 4;, purpose P will (will not) be achieved. Acting on these leads to
the adopting of some alternative 4; which it is thought will lead to achieving the pur-
pose. Trivially, all the conditionals of this set prove to be materially true under these
conditions if and only if the purpose actually is achieved. We still would not want to
say that ‘arriving at conclusions which are materially true’ aptly described the aim of
reasoning about consequence propositions in this case, if only because this aim alone
would not explain why we should regard it as unsatisfactory to arrive at ‘probabilistical-
ly inconsistent conclusions’ of the form ‘if I adopt 4; then .R; will follow, and if I adopt
Ai then R; will not follow’. It is to be conjectured that what would be unsatisfactory
about arriving at this type of ‘inconsistency’ would not so much be that actions based
on them would have undesirable results, but rather that such conclusions cannot be
acted on.
18 Note the transition to the subjunctive ‘after the fact’ where the conditional “If I eat
these mushrooms I will not be poisoned’ which might have been affirmed prior to de-
ciding not to eat the mushrooms becomes ‘subjunctivized’ a posteriori. We will come
upon a similar phenomenon in Chapter IV, where we consider the effect on the mood of
the conditional ‘if 4 then B’ a posteriori, after learning ‘not B’.
19 Something like this difficulty also arises with Richard Jeffrey’s theory of decision,
formulated in his book The Logic of Decision [34]. The basic problem in Jeffrey’s case is
\]the same as that arising in ours: namely that he allows the possibility of action influen-
cing probability (this is not explicit in Jeffrey’s theory, since he makes no clear distinc-
tion between alternatives which are chosen among and ‘events’ of other kinds, but it is
implicit). On the other hand, Jeffrey’s theory makes certain ‘combinatorial® assumptions
which the present theory does not, and this permits a kind of ‘reduction’ of probability
and utility to pure preference which is not possible in the present context.
20 Actually, we must assume that these likelihood comparisons can be made not only
between ‘atomic results’ like Ri1 ans Rje, but also among ‘Boolean combinations’ of
them, so that a person can make a judgment of the form ‘if 4; is adopted it is more
likely that R will follow than that one of Riz or Ris will follow’.

CHAPTER 1V

A HYPOTHESIS CONCERNING COUNTERFACTUALS;
PROBABILITY CHANGE ASPECTS OF INFERENCE

1. AN EPISTEMIC PAST TENSE
INTERPRETATION OF COUNTERFACTUALS

The hypothesis with which this chapter is concerned is that, in a sense to
be explained, counterfactual conditionals like

If that bird were a canary then it would be yellow.

function as a kind of ‘epistemic past tense’, and in particular their probabil-
ities at the time of utterance equal the probabilities which were or might
have been attached to corresponding indicative conditionals like

If that bird is a canary then it will be yellow.

on real or hypothetical prior occasions. This hypothesis, which was earlier
advanced in Adams [5] and independently by Skyrms in [50], will prove
in the end to be untenable or at best dubious in complete generality.
Nevertheless, it offers simple and plausible explanations for such a wide
variety of logical phenomena involving the counterfactual that it merits
detailed consideration in that one may reasonably expect a hypothesis
like the present one to be central to any satisfactory general theory of the
counterfactual.

There is a difficulty in saying just what a counterfactual conditional is.
Goodman [23], Michael Ayers [8], and the author [5] have all argued
that it is a mistake to define counterfactuals as conditionals which entail
or in some sense ‘implicate’ the falsity of their antecedents, and we will
give below further reasons for rejecting the ‘antecedent falsity’ character-
ization. It is more plausible to identify the counterfactual with the sub-
Junctive mood as in “if that bird were a canary it would be yellow”, but
this too is not entirely satisfactory. The subjunctive is also the standard
mood of indirect discourse, as when one person reports another’s con-
ditional utterance “the meetings will be held indoors if it rains by saying
“he said that the meetings would be held indoors if it rained”. Also we
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feel uneasy in calling a warning like “I would not do that if I were you”
a counterfactual conditional (or any kind of conditional), just because of
its employment of the “were... would not...” construction. Furthermore,
we do not really know the limits of the subjunctive, and in the end we will
see reasons for wanting to regard statements like

Had he studied, he should have passed.
and even
If he studied then he should have passed.

as counterfactuals, whether or not they are grammatically of subjunctive
form. Given these difficulties, it is probably premature to attempt a
precise characterization of ‘the counterfactual conditional’ (such a
characterization might more properly be expected to accompany and not
to preceed the formulation of an adequate theory of counterfactuals), and
we will content ourselves here with the rough description of counter-
factuals as being conditionals /ike “if that bird were a canary then it
would be yellow.”

Granted that counterfactuals do not necessarily entail the falsity of
their antecedents, it is possible to argue that they do not in fact differ in
logically essential respects from their corresponding indicative condi-
tionals (Ayers [8] argues for the logical equivalence of the two forms).
We now wish to argue that the two forms do differ logically but this
difference is of a special sort, the characterization of which leads us to
formulate our ‘epistemic past tense’ hypothesis. A typical situation in
which the two conditionals differ is that in which their common conse-
quent is known to be false, where the counterfactual is often affirmable
while the indicative is not. Going back to our canaries, imagine the
following situation. Two men are walking in the woods and spy a bird in
the shadow in such a way that its color cannot be made out. One man
might use the indicative in telling the other “If that bird is a canary it will
be yellow.” Now, however, suppose that the bird flies out into the sunlight,
where it is clearly seen to be blue and not yellow. Under the circumstances
the first man will be unlikely to continue to affirm the indicative — and
indeed he should not, since learning the falsity of its consequent makes it
too improbable to justify continued affirmation. On the other hand the
first speaker will be likely to ‘substitute the counterfactual for the indica-
tive’ and affirm ““if that bird were a canary it would be yellow.” It must be
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stressed that this ‘finding the consequent to be false’ type of situation is
not one in which the indicative conditional is found to be false while the
counterfactual is true, but rather one in which the probability of the
indicative conditional becomes low as a result of learning new evidence
(that its consequent is false), while presumably the probability of the
counterfactual is high or becomes high. Our problem is to substantiate the
latter claim, by giving a theoretical representation of the probabilities of
counterfactual conditionals analogous to our earlier theory of the proba-
bilities of indicatives. Note in passing, by the way, that if the only situa-
tion in which the counterfactual differed significantly from the corre-
sponding indicative should prove to be that in which their common
consequent was known to be false, then we would have an explanation as
to why the counterfactual, regarded as a species logically distinct from the
indicative, should be thought to entail its antecedent’s falsity. This would
be because the only situation in which the counterfactual could be affirmed
but not the indicative would be one in which its antecedent was highly im-
probable. We will shortly see that things are more complicated, however.

As a preliminary to formulating a hypothesis which would account for
substituting the counterfactual for the indicative, consider how this sort
of substitution normally accompanies the making of a Modus Tollens
inference. In the canary example, after seeing that the bird is blue and not
yellow and substituting the counterfactual for ““if that bird is a canary it
will be yellow”, the first speaker would be apt to conclude “that bird is not
acanary.” In fact, crude logical analysis might represent the man as having
made a Modus Tollens inference from an indicative conditional premise,

thus:
If that bird is a canary it will be yellow. It is not yellow,

but blue. Therefore, it is not a canary.

The foregoing would, however, seriously misrepresent the actual reason-
ing by suggesting that a proposition which was actually given up before
the conclusion was arrived at (the indicative conditional) was a premise,
or ground, or reason for arriving at that conclusion.! It is more plausible
to describe the man as having made a Modus Tollens inference with a
counterfactual conditional premise instead:

That bird is not yellow, but blue. If it were a canary it
would be yellow. Therefore, it is not a canary.
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Here at least both premises are propositions actually accepted at the time
the conclusion is arrived at, though, granted the logical difference between
the counterfactual and the indicative, we have a new problem of logical
analysis because we cannot apply tests of soundness appropriate to
inferences involving indicative conditionals to ones involving counter-
factuals. Note, by the way, that by far the more common mood for
conditional premises of real life Modus Tollens inferences (which are the
simplest of Reductio ad Absurdum arguments) is the subjunctive, and
therefore orthodox logic makes doubly questionable assumptions in
treating them as material conditionals for the purpose of determining
soundness.

‘We will next argue that in analyzing the foregoing reasoning it would be
just as wrong to regard it simply as a Modus Tollens inference with a
counterfactual premise as it would be to regard it as an indicative Modus
Tollens inference. We must take into account the fact that the reasoner
began by believing an indicative conditional, and then he acquired in-
formation (that the conditional’s consequent was false) which resulted in
two things: (1) making the original conditional improbable, though the
counterfactual either remained or became probable, and (2) making the
conclusion “that bird is not a canary” probable. Both of these are
probability changes, even if only the second is something we feel happy in
calling an ‘inference’. Nevertheless, probability theory explains why the
indicative should become improbable in the circumstances described, and
we may ask whether it can also explain why the conclusion should become
probable. Leaving aside for the moment the significance of the counter-
factual in the reasoning, we may ask: granted that the indicative condi-
tional was originally highly probable, and that its consequent was then
established as false, should its antecedent thereupon become highly
improbable, so that its negation can be affirmed? The Bayesian theory of
probability change? shows that the answer to the foregoing question is a
qualified ‘yes’.

For the purpose of applying Bayesian theory, let us symbolize “that
bird is a canary” and “it is yellow” by “C” and “¥”, respectively. We are
interested in two sets of probabilities: prior probabilities which apply to
propositions before the new evidence (that the bird is not yellow, sym-
bolized “— Y”) is acquired, and posterior probabilities which apply after
its acquisition. Let prior and posterior probabilities be represented by the
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probability functions p, and p;, respectively. We can center attention on
the two ‘hypotheses’, — C and C (that the bird is not a canary and that it is
a canary), and their relative probabilities before and after acquiring the
new evidence, as given by the prior and posterior probability ratios,
Po(—C)/po(C) and p,(—C)/p,(C). Assuming that the reasoner in our
example was not sure g priori that the bird was not a canary, the prior
probability ratio po(— C)/po(C) would not have been very high. If he
inferred a posteriori that the bird was not a canary, then the posterior
probability ratio p;(— C)/p,(C) should have been high.

The following version of Bayes’ Theorem relates the posterior and
prior probability ratios in the example:3

2 (=€) _p(=C) p(~Ygiven —C)
p:(C)  po(C) p(— Ygiven C)

(O]

The two probabilities p(— ¥ given —C) and p(— ¥ given C) are ordinarily
called simply ‘conditional probabilities’ in probability texts, though we
shall here call them inverse conditional probabilities to distinguish them
from closely related conditional probabilities with which they might
otherwise be confused. The inverse conditional probabilities are condi-
tional probabilities of the new evidence, — ¥, given the first hypothesis,
—C, and given the second hypothesis, C, and in this example they
necessarily equal the prior conditional probabilities, po(—Y & —C)/
Po(—C) and po(— ¥ & C)/po(C), respectively. What Equation (1), which
is an instance of what will be called the inverse probable inference formula,
tells us is that the posterior hypothesis probability ratio equals the prior
hypothesis probability ratio multiplied by the new evidence inverse con-
ditional probability ratio. For the posterior probability ratio to be high,
then, the product of the two probability ratios on the right of Equation
(1) must be high.

‘What we know from our description of the canary example is that prior
to observing the bird’s color the indicative conditional “if C then Y
was probable, hence that po(Y given C) was close to 1. This entails that
po(— Y given C), which equals the inverse probability p(— Y given C) in
the denominator in Equation (1), must be close to 0. That a factor in the
denominator on the right of Equation (1) is close to 0 is almost enough to
guarantee that the entire fraction must have a high value, which would in
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turn entail that the posterior probability ratio, p;( —C)/ps(C), should be
high and that — C could be affirmed a posteriori. In fact, this inference is
warranted except in two cases which are themselves of considerable
significance. The two cases in which p,(— C)/p,(C)is not high even though
Po(Y given C) was high and — Y was then learned are: (1) the numerator
inverse probability, p(— Y given — C), is just as low as the denominator
inverse probability, and (2) the prior hypothesis probability ratio,
Po(—C)/po(C), was itself close to 0. Either of these is a real possibiliy,
and in those circumstances it is not rational to make the Modus Tollens
inference. Case (1) is that in which, prior to observing the bird’s color, it
would have been rational to affirm not only “if that bird is a canary it will
be yellow”, but also “if that bird is not a canary it will be yellow” (the
bird will be yellow, whether not it is a canary — perhaps we are in a region
where all birds are yellow). In such circumstances it would obviously be
irrational for a reasoner seeing a blue bird to conclude that it must not be
a canary, in spite of having originally affirmed “if that bird is a canary it
will be yellow.” Case (2) is analogous, except that here the reasoner is
certain a priori that the bird must be a canary, but only regards it as
probable that if it is a canary it will be yellow. Under the circumstances,
perceiving it to be blue will not cause the reasoner to conclude that the
bird is not a canary.

The upshot of the foregoing is that though it is normally rational to
infer —C upon learning — ¥, having previously affirmed “if C then Y,
there are exceptional circumstances in which this inference is not valid.
What is striking about these exceptional circumstances is that they are
ones in which the new information contradicts prior beliefs. In one case the
reasoner believes that the bird will be yellow, whether or not it is a canary,
and then learns something contradictory — that the bird is not yellow. In
the other case the man believes that it is a canary and if it is a canary it will
be yellow, and then he learns it is not yellow. We will see later (Section 9)
that, contrary to the standard logical maxim that anything follows from a
contradiction, the ‘inconsistent premise’ case is almost always an irrational
exception to otherwise generally valid tules of ‘sequential inference’,
where probability changes are considered explicitly. Thus, our sequential
Modus Tollens process is rational, excepting only in the special case
where the new information is inconsistent with prior beliefs, and we will
see that this is an exception to almost all rules of valid inference.
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According to the foregoing, the probability of — C after — Y is learned
should depend solely on the two prior probability ratios on the right of
Equation (1), and this should make one wonder what rdle could have been
played by the counterfactual in arriving at the final conclusion of the
Modus Tollens inference. Let us hypothesize the following as perhaps the
simplest way of accounting for the counterfactual: the counterfactual
plays no essential role in the original speaker’s reasoning, but it in some
way communicates the fact that prior to observing the bird’s color, the
corresponding indicative could have been (perhaps was) affirmed. Note
that thus interpreted, the counterfactual in the present example is likened
to a certain extent to an indirect discourse subjunctive. Whatever justifies
the posterior affirmation of the counterfactual is then exactly the same as
what did or might have justified the prior affirmation of the indicative, so
the counterfactual can be regarded as a kind of epistemic past tense,
expressing not what was the case at a prior time, but what could have been
affirmed at the prior time. A somewhat more precise version of the
‘epistemic past’ hypothesis is that the probability appropriately associated
with the counterfactual a posteriori is equal to that of the corresponding
indicative conditional @ priori — posterior counterfactual probabilities are
prior indicative probabilities.

The above ‘prior conditional probability hypothesis® is the one whose
consequences will concern us in much of what follows, even though, as
noted, it will ultimately turn out to be tenable only in limited generality.
Before turning to detailed applications, there are two bits of evidence for
the hypothesis which can be cited immediately. One is the already obvious
fact that to the extent that the hypothesis is true we are able to account
theoretically for the difference between the indicative and counterfactual
conditionals, and to explain why counterfactuals are often substituted for
indicatives when new information is learned. After new evidence is
acquired, the indicative’s probability is a posterior conditional probability
which may be low because this new evidence was acquired, while the
counterfactual’s probability is a prior conditional probability which may
be high because prior to acquiring the evidence the indicative conditional
was probable. The second bit of evidence is that it is intuitively appropriate
to use the subjunctive-counterfactual in describing the inverse conditional
probabilities which enter into standard textbook applications of Bayesian
inference. It is worth giving an example.



110 CHAPTER 1V

Consider an ‘observer’ who sees before him an urn, which he knows to
be one of two outwardly identical urns of which one was chosen by
flipping a fair coin to set before him, and which, to emphasize the analogy
with the reasoning about the canary, we will call urns C and — C.4 The
observer also knows that both urns contain mixtures of yellow and blue
balls differing only in color, and that urn C contains 99%, yellow and 1%
blue balls, while urn — C contains 20%, yellow and 80% blue balls. Armed
with this information the observer now draws one ball at random from
the urn in front of him, which proves to be blue, and his problem then
becomes that of determining the probability which should be estimated
a posteriori that the urn before him is urn —C. The information given
determines directly the probability ratios entering into the right side of
the inverse inference formula (1), with po( — C)/po(C) equaling 1 (hypoth-
eses equally likely a priori) and p(—Y given —C) and p(— ¥ given C)
being .80 and .01, respectively (inverse-prior conditional probabilities
being equal to corresponding proportions). According to Equation (1),
P1(—C)[p;(C) should then equal 80, hence a posteriori it is eighty times as
likely that the urn in front of the man is — C than that it is C. The point
for us, though, is that a very natural way of describing an inverse probabil-
ity such as p(— Y given C) in this problem is as

the probability that a yellow ball would not have been
drawn if the urn were urn C

which is of the form of a probability of a counterfactual conditional. Thus,
the counterfactual is appropriate not only in informal reasoning such as
that in the canary example, but also in describing the probabilities which
enter the highly structured inferences typical of textbook examples of
Bayesian reasoning.?

The following sections consider a variety of applications of the prior
conditional probability hypothesis, before we encounter its difficulties.

2. COUNTERFACTUALS AND EXPLANATIONS

We get an inference involving something like explanation by modifying
our canary example, and supposing that instead of seeing the bird to be
blue after affirming the indicative “‘if that bird is a canary it will be yellow”,
the two observers perceive it to be yellow when it flies into the sunlight.
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This is an observation which would tend to confirm the hypothesis that the
bird is a canary, and the inverse inference formula can be applied to
determine precisely what the posterior probability ratio of the hypotheses
—C and C should be as a function of their prior probability ratio, and of
the inverse conditional probabilities of the new evidence (here Y instead
of —Y) given the two hypotheses:

@) (= C)=Po(— C) " p(Y given — C)
r1(C) po(C) p(Ygiven C)

In this case the denominator inverse probability, p(¥ given C), is close to
1 rather than 0, and so assuming that the numerator probability p(Y
given — C) (the prior probability of the bird’s being yellow, given that it
is not a canary) is not high, it is clear that observing the bird to be yellow
should decrease the probability of the bird’s not being a canary and in-
crease that of its being a canary. Explanation enters the picture here
because being a canary would explain the bird’s coloration, and Equation
(2) gives precise expression to the common observations that possible
explanations of a phenomenon must be hypotheses which would either
make the phenomenon probable or at least make it more probable than
would be the case a priori, and that establishing something which a hypoth-
esis explains tends to confirm the hypothesis. It should be stressed that
our mathematical formulation involves both prior and posterior probabil-
ities, since this suggests that, while it is commonly argued that a general
theory of explanation must involve probabilities, no adequate theory can
be given in terms of probabilities simpliciter, ignoring distinctions of
kind.

The inverse conditional probabilities entering into Equation (2) are
still plausibly interpreted as the probabilities of counterfactuals which
might be affirmed after observing the bird’s color. Leaving aside explicit
probabilities one might argue:

That bird is likely to be a canary because it is yellow, for,
if it were a canary it would be yellow.

This is an instance of a general pattern of ‘explanatory inference’ where
it is argued that such and such an explanation is /ikely, because, if it were
the case then such and such observed facts would be the case.® What is
striking about the counterfactuals occurring in such reasoning is that they
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are neither equivalent to the corresponding indicative conditionals, nor
do they in any sense imply the falsity or improbability of their antecedents.
A person observing a bird to be yellow and affirming “if that bird were a
canary it would be yellow” certainly does not thereby intimate that the
bird is not a canary, and just as obviously the counterfactual would have
a very different logical force from the wholly uninformative indicative
“if that bird is a canary then it is yellow”, which might be uttered under
the circumstances.

Of course, merely noting the roles played by counterfactuals and prior
conditional probabilities in certain kinds of inferences related to explana-
tions does not constitute an analysis of explanation, and does not purport
to throw light on such interesting problems as defining the connection
between explanation and prediction, and explaining what is unsatisfactory
about ad hoc explanations. We would conjecture, nevertheless, that satis-
factory solutions to these problems must take into account the connec-
tions between explanations, counterfactuals, and prior probabilities. Our
primary concern here, though, is with counterfactuals per se, and in this
case as in similar applications to be noted in succeeding sections, we must
leave the detailed development of the application as unfinished business.

3. LOGICAL ISOMORPHISM OF COUNTERFACTUAL AND
INDICATIVE

Assuming that the probabilities of both indicative and counterfactual
conditionals are representable by conditional probability functions, we
would expect the two kinds of conditionals to satisfy the same logical
laws. In particular, for inference patterns like the Hypothetical Syllogism
which have exceptions in the indicative, we would expect parallel excep-
tions in the subjunctive, and where the indicative schema is universally
probabilistically sound we would expect the same to hold of the corre-
sponding counterfactual schema. These expectations are partially con-
firmed, but there are puzzles which lead to further interesting considera-
tions. ‘

As confirmation of our predicted ‘logical isomorphism* of counter-
factual and indicative, it is to be noted that exceptions to such generally
accepted indicative schemata as the Hypothetical Syllogism and Contra-
position transform into exceptions to the corresponding counterfactual
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schemata simply by being ‘put into the epistemic past’, just as the epistemic

" pastinterpretation of the counterfactual would predict. Recall the counter-

instance to the Hypothetical Syllogism described in Section 1.3 which in-
volves two candidates for a public office, Jones and Smith, where Smith
is the incumbent who has announced his intention of retiring to private
life in the event of his defeat. Before the election it was possible to affirm
the indicative conditionals “If Jones wins then Smith will retire” and
“If Smith dies before the election then Jones will win”, but it would be
absurd to ‘deduce’ “If Smith dies before the election then he will retire
after it.”” After the election, supposing Smith actually was the winner, all
of these indicative conditionals would transform to the subjunctive, to
yield the two acceptable premises “If Jones had won then Smith would
have retired” and “If Smith had died before the election then Jones would
have won”, though the counterfactual ‘conclusion’, “If Smith had died
before the election then he would have retired” would be just as absurd
as in the indicative. Similarly, a counterinstance to the Contraposition
pattern which was described in Section 1.3 transforms to the equally
absurd counterfactual inference with the premise “If it had rained yester-
day there would not have been a terrific cloudburst” and conclusion “If
there had been a terrific cloudburst yesterday it would not have rained.”

Our epistemic past interpretation would predict that there should be
no exceptions to the counterfactual transforms of such universally sound
indicative patterns as the Restricted Hypothetical Syllogism, and we have
not been able to construct any, although we must anticipate the likelihood
of their existence in view of the limited tenability of the epistemic past
interpretation. There are, however, two more immediate difficulties with
the isomorphism hypothesis which will concern us in the next two sec-
tions. One has to do with the ambiguity of the counterfactual, which will
be taken up in Section IV.5, and the other has to do with the fact that the
isomorphism hypothesis apparently breaks down in application to in-
ference schemata involving both factual and conditional propositions
such as Modus Ponens. This is the topic of the following section.

4. A POSSIBLE NONCONDITIONAL COUNTERFACTUAL

The remarks in this section will be more speculative than those in previous
sections, and they are made principally in the hope that some readers may
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find them suggestive for further work. We noted that it is an apparent

limitation on our isomorphism hypothesis that there seem to be no -

counterfactual transforms of inferences involving both indicative condi-
tional and factual propositions such as the Modus Ponens inference:

Jones will arrive by eight p.m. If he arrives by eight then we
will dine at 8:30. Therefore, we will dine at 8:30.

The problem is that while there is a counterfactual conditional corre-
sponding to “If Jones arrives by eight then we will dine at 8:30” (namely
““If Jones had arrived by eight, we would have dined by 8:30”), we don’t
know what the counterfactuals corresponding to the two factual proposi-
tions involved would be. Question: is there a form of English expression
which is appropriately described as a ‘nonconditional counterfactual’?
Such expressions should stand logically to ordinary factual statements as
indicative conditionals do to counterfactual conditionals, and, in particu-
lar they should fit the isomorphism hypothesis. Furthermore, assuming
the epistemic past interpretation of the counterfactual, we should find
that the probabilities of nonconditional counterfactuals should be prior
nonconditional probabilities, and, most importantly, we should some-
times find nonconditional counterfactuals arising ‘by substitution’, when
new information comes to hand rendering a previously probable factual
proposition improoabie a posieriori.

The ‘substitution for the factual’ property predicted of nonconditional
counterfactuals gives us a clue. Imagine the following situation. Smith is
giving a party at which Jones is to be the guest of honor, and Jones is
expected to arrive by eight p.m. Prior to eight o’clock it is reasonable to
affirm the factual proposition “Jones will arrive by eight p.m.” Now
suppose, however, that eight p.m. arrives but Jones doesn’t, so that it is
no longer reasonable to affirm “Jones arrived by eight p.m.” (note that
mere passage of time requires substitution of the factual past). On the
other hand, what would probably be affirmed is “Jones should have
arrived by eight p.m.” It is at least prima facie plausible to regard the
latter claim as communicating the fact that the corresponding factual
statement could have been made at a prior time, and in fact as resting on
exactly the same grounds as existed earlier for the factual proposition.?
This would be in effect to give an epistemic past interpretation to “Jones
should have arrived by eight p.m.”, which in turn suggests the appro-
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priateness of describing this statement as a nonconditional counterfactual.
Granted this, it is plausible to take the inference

Jones should have arrived by eight p.m. If he had arrived by
eight we would have dined by 8:30. Therefore, we should have
dined by 8:30.

as the counterfactual transform of the indicative Modus Ponens.

The counterfactual Modus Ponens has some intuitive plausibility, which
confirms the isomorphism hypothesis, but obviously a broader survey is
required. This matter has as yet been insufficiently studied, but the fol-
lowing example brings to light a difficulty both with the isomorphism
hypothesis and with the epistemic past interpretation on which it is based.
By isomorphism, the counterfactual inference

If that bird were a canary it would be yellow. Therefore, it
should not be the case that it is both a canary and not
yellow.

should be rational, which it seems to be intuitively. However, here we are
inclined to interpret the “should not be the case” in the conclusion as an
inessential variant of “is not the case’, since it seems rational to infer
from the counierfactual premise ihe indicative conclusion ““it is not the
case that that bird is both a canary and not yellow.” Indeed if the stronger
indicative inference were sometimes not rational then the counterfactual
conditional should sometimes be consistent with the affirmation of its
antecedent coupled with the denial of its consequent, the inconsistency
of which has seemed to many to be the one solid ‘datum’ concerning
counterfactuals in what is otherwise a sea of uncertainty. The problem is
that it not only does not tollow from our epistemic past interpretation
of ““if A were the case then B would be” that this counterfactual should be
inconsistent with “4, but not B”, but this would actually be inconsistent
with the interpretation.

Consider one of the exceptional cases in which it would not be rational
to infer “that bird is not a canary” upon perceiving the bird to be blue,
not yellow, in spite of having previously affirmed the indicative “if that
bird is a canary it will be yellow.” This is the case in which prior to ob-
serving the bird’s color the reasoner was sure that the bird was a canary,
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and somewhat less sure of the indicative conditional. In the circumstances,
upon seeing the bird to be blue, the reasoner would be apt to conclude
“that bird is a canary, but it is not yellow.” But it seems intuitively very
implausible that he would affirm the counterfactual “if that bird were a
canary it would be yellow” (affirmation of which would contradict the
contradictoriness of “if 4 were the case then B would be” with “4, but
not B”), in spite of the fact that by the epistemic past interpretation its
probability should be high enough to justify affirmation (because prior
to observing the bird’s color, the indicative was probable enough to be

affirmed). Generalizing, it would seem that in those exceptional cases’

where the Modus Tollens inference is irrational, reasoners do not affirm
the counterfactual after giving up the indicative. If this ‘disaffirmation’
were itself a matter of probability (as against, say, being something dic-
tated by helpfulness considerations), then we should have to say: (1) high
prior conditional probability was at best a necessary but not a sufficient
condition for the acceptability of the counterfactual; (2) the counter-
factual is always inconsistent with the affirmation of its antecedent and
denial of its consequent; and (3) counterfactual Modus Tollens inferences
of the form

Not B. If 4 were the case then B would be. Therefore, not A.

were always rational.

That high prior probability may be only a necessary and not a sufficient
condition for affirmability of the counterfactual may prove ultimately to
be the case (Skyrms [52] appears to suggest this), but there is another
possibility. What the reasoner would be apt to say after seeing the bird’s
color in the case just described is ““if that bird is a canary then it should be
yellow” (or perhaps even “if that bird should be a canary then it ought
to be yellow”). And, granted that these are variants of the counterfactual,
he would still be affirming a counterfactual conditional in conformity
with the epistemic past interpretation. Thus, broadening the characteri-
zation of the subjunctive-counterfactual may allow.us to save the epistemic
past interpretation, though at the price of ¢onsidering possibly logically
non-equivalent counterfactuals. Again this is a matter requiring further
study, but since we will encounter a far more serious problem with the
epistemic past interpretation in Section 8, we shall not consider it further
here.
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We conclude this section by commenting briefly on possible relations
between our nonconditional counterfactual “should” and the ‘practical’
or ‘deontic’® reading which is the obvious one in examples like:

He should have replied pawn to King four.
or
No pets should be inside the store.

Observe that both sentences can have the epistemic interpretation (as
against the more common ‘valuational’ one), and it is not unreasonable
to ask whether the grammatical identy of form of many epistemic “‘should”
statements with practical “should” statements reflects common logical
properties. Put another way, it is interesting to ask how far Deontic Logic
(the logic of the practical “should”) is just a special case of a generalized
logic of “should” (or “ought”). Though the question can scarcely be
more than raised here, we will argue that at least one well known logical
puzzle supposedly peculiar to Deontic Logic really arises with the epistemic
““should” as well, and can therefore be regarded as a problem of the general
logic of “should”. This is the Good Samaritan Paradox.®

The logic of the paradox is made evident in the following version:

It ought to be the case that the beaten and robbed man is
helped. Therefore, it ought to be the case that the man was
beaten and robbed.

The conclusion follows from the premise assuming the commonly accep-
ted ‘inheritance principal’: ““X ought to be the case” entails “Y ought to
be the case™ if X entails Y. But precisely this principal fails in application
to the epistemic “ought™ as well, as the following example shows. Imagine
a man seeing for the first time in years a boy who had been small for his
énge, but who has now grown to the astonishing height of six and a half
feet. Pointing him out to a friend, the man might say “It ought to be the
case that six and half foot boy is under six feet tall”’, which, according to
the inheritance principal, should entail the absurd conclusion “It ought
to be the case that that boy is both over and under six feet tall.” This is
not to say that the proper resolutions of ‘paradoxical’ failures of inheri-
tance principals will be the same for both readings of “‘should” and
“ought”, but at least the analogies suggest that it may be fruitful to
examine inheritance principals in a general setting, rather than just in
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deontic contexts. The following section, among other things, suggests an
explanation for inheritance principal failures.

5. AMBIGUITY AND SCOPE

It seems to be widely recognized that counterfactuals are often ambiguous,
and in this section we will discuss some of the implications of a possible
explanation of this as arising in part from the nonspecificity of the “prior”
in the prior probabilities which we have hypothesized as representing
counterfactuals. Consider the following illustration (originally described
in [5]). A party has been given and we are interested in the question of
whether a particular man, Jones, attended it. Initially we know three
things: (1) Jones did not see another man, Brown, on the evening of the
party, (2) Brown does not like to be at parties where Jones is present and
avoids them where possible, and (3) when not partying Jones and Brown
get along very well, and often meet at a favorite bar. It is possible to ar-
gue as follows that this information confirms the hypothesis that Jones
was at the party:

If Jones had been at the party, Brown would very likely not
have been, so Jones wouldn’t have seen him. If Jones had not
been at the party there is a very good chance that he would
have seen Brown at the bar they both frequent. So Jones
would have been less likely to have seen Brown if he had
gone to the party than if he had not. Hence, since he didn’t see
Brown, he probably went to the party.

(this informal argument is supported if the implicit probabilities are made
explicit, and the reasoning is analyzed as an inverse probable inference).
Note that in the circumstances we affirm the counterfactual ““If Jones had
been at the party he wouldn’t have seen Brown (because Brown wouldn’t
have been there).” Suppose now, though, that we learn that Brown was
at the party. This would lead us to conclude that Jones was not at the
party, arguing by a counterfactual Modus Tollens inference

Jones didn’t see Brown. If Jones had been at the party he
would have seen Brown, because Brown was at the party.
Therefore, Jones wasn’t at the party.
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Again probabilistic analysis confirms the soundness of this reasoning, but
the point here is that now we affirm the counterfactual “If Jones had been
at the party he would have seen Brown” (because Brown was there) which
is the contrary of the earlier counterfactual. We may ask why in the cir-
cumstances we didn’t continue to affirm the original counterfactual “If
Jones had been at the party he wouldn’t have seen Brown” (because if
Jones had been at the party Brown wouldn’t have been, so Jones wouldn’t
have seen him). .

Rather than argue that one of the two counterfactuals above must be
right and the other wrong because they are formal contraries, it seems
more appropriate to say that the words used to express them are systema-
tically ambiguous, and when they are disambiguated (a process which
might involve making implicit probabilities explicit) they do not conflict.
One counterfactual, “If Jones had been at the party he would not have
seen Brown”, corresponds to an indicative which could have been affirmed
prior to learning either that Jones did not see Brown on the evening in
question, or that Brown was at the party. The formal contrary corresponds
to an indicative which might have been affirmed if we had first learned
that Brown was at the party, and then subsequently learned that Jones
did not see Brown that evening. Note, by the way, that this latter reading
has the counterfactual corresponding to an indicative which could have
been affirmed in Aypothetical prior circumstances, rather than in actual
ones. The necessity of broadening “prior” to include not only indicative
conditionals and the probabilities which might have been assessed on
actual occasions but also ones which could have been assessed on
hypothetical ones will be discussed further Section 7. For the present,
though, we are concerned with the mere fact of ambiguity, in particular
as that ambiguity is reflected in ambiguities of the scopes of counter-
factuals.

In Section 1.6 we defined the scope (of antecedent restrictability) of an
accepted indicative conditional to be the class of all propositions which
when conjoined with the conditional’s antecedent do not render it un-
acceptable. Applying the scope concept to material conditionals, we also
noted that one way of characterizing the difference between material and
indicative conditionals is to say that while material conditionals have
universal scope (all propositions), indicative conditionals only have
universal scope if they are perfectly certain, though they always include
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the known world (all propositions accepted as certainties) in their scopes.
Scope also generalizes at least roughly to counterfactuals, so that, for
instance, the proposition that the observed bird should be wild would fall
into the scope of “If that bird were a canary it would be yellow” (as
affirmed in the circumstances earlier described), since the speaker would
presumably also be willing to affirm “if that bird were a wild canary it
would be yellow”, but the proposition that the bird should be blue
would not fall into the scope because the speaker would not affirm “if that
bird were a blue canary it would be yellow.” This example also illustrates
an important difference between indicative and counterfactual condition-
als: that while indicatives’ scopes include the known world, counter-
factuals’ scopes usually do not include all of that. In the canary example
the person affirming “if that bird were a canary it would be yellow”
would not affirm “if that bird were a blue canary it would be yellow”, in
spite of being perfectly sure that the bird was blue. In fact, at least in the
case where posterior probabilities arise from prior probabilities by
acquisition of new ‘evidence’, the scopes of the counterfactuals whose
probabilities equal prior probabilities will not include the new evidence
unless that can be expressed as a proposition which was already accepted
a priori. Conversely, in the special ‘limiting case’ where the counterfac-
tual’s scope does include the known world, posterior probabilities must
equal prior probabilities, and therefore the counterfactual and indicative
will not differ in probability (all of this assuming the prior conditional
probability representation, of course).

It is to be expected that ambiguities about priors will have their counter-
parts in ambiguities of scope in counterfactuals. Thus, one way to
characterize the difference between the intended meanings of the counter-
factuals ““if Jones had been at the party he would have seen Brown” and
““if Jones had been at the party he would not have seen Brown” in our
earlier example is to say that the former is meant to include the known
fact that Brown was at the party in its scope, while the latter is not in-
tended this way. Similarly, to take the famous example of Goodman’s [23]
“if this penny had been in my pocket on VE day it would have been
silver”, allegedly not affirmable in spite of the postulated fact that all
coins in my pocket on VE day were silver, it is possible to give this
counterfactual an acceptable interpretation in which the fact that all coins
in my pocket on VE day were silver is part of the counterfactual’s scope,
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while the fact that the coin in question is a penny is not. In fact, such a
reading would be the most natural one in a situation in which I am con-
cerned with the question of whether the penny was in my pocket on VE
day, where I might reason:

This coin is a penny and not silver. If it had been in my pocket
on VE day it would have been silver. Therefore, it was not in
my pocket on VE day.

Recognizing the possible scope ambiguities of counterfactuals only
leads, of course, to a new problem of trying to give the rules for disambigua-
tion in particular contexts. This is something which requires detailed
study, and we will only hazard the following concerning such rules. It is
probable that in the case of particular counterfactuals (as against, say,
counterfactuals asserting what would be the case if such and such a
general law were not the case), the scope includes all known or strongly
believed generalities, together with at least all items of particular informa-
tion known about the individuals involved which are independent of and/
or ‘reasonably predate’ the events spoken of. Thus, even in the case where
Brown’s being at the party is excluded from the scope of “If Jones had
been at the party he wouldn’t have seen Brown”, the counterfactual’s
scope will include such generalities as that two persons at the same party
can be expected to sce one another, plus such particulars about Jones as
that he is the man who lives at such and such a place, has such and such
an appearance, and in general is “the man we know him to be.”

Granted the foregoing rough rule, we can explain several counter-
factual phenomena. That accepted laws ““support counterfactuals” while
fortuitious general truths often do not is explained by the fact that
general laws normally belong to the scopes of particular counterfactuals
but fortuitious general truths (e.g. that the coins in my pocket on VE day
were all silver) often don’t. That it is very difficult to construct future
tense subjunctive-counterfactuals which differ significantly from their
corresponding indicatives is explained on the assumption that counter-
factuals® scopes include known information reasonably predating the
events spoken of, which will include all known information for events
sufficiently far into the future (recall that if a counterfactual’s scope in-
cludes all the ‘known world’ then it will not differ in probability from the
corresponding indicative).10
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Finally, such ‘paradoxes’ as failures of inheritance principals and
puzzles concerning ‘counteridenticals’ (see Goodman [23]) are, we would
suggest, resolved if we simply notice that facts about individuals which
are made use of in referring to them are often rnot part of the scopes of
counterfactuals involving referring expressions. For instance, the fact
that a coin is a penny, which is made use of in referring to it as “this
penny” is not part of the scope of the acceptable reading of “‘if this penny
had been in my pocket on VE day it would have been silver” previously
noted. Similarly, the fact that a boy is six and a half feet tall is not part of
the scope of the non-conditional counterfactual “it ought not to be the
case that that six and a half foot boy is six and a half feet tall”’, considered
in Section 4. And, that counteridenticals of the form “if x had been y then
S would have been the case’” normally include facts known about y while
excluding much known about x from their scopes explains why this
counterfactual is not necessarily incompatible with ““if y had been x then
S would not have been the case.”

6. TRUTH-CONDITIONALITY AND DEFINABILITY;
CONNECTIONS WITH DISPOSITIONALS

Putting aside for now problems arising from the ambiguity of the counter-
factual, we may ask whether the counterfactual can be in some way ‘red-
duced’ to the factual and/or the indicative conditional, and whether it is
truth-conditional. There are persuasive prima facie arguments that neither
can be the case, and this in turn raises questions about the possibility
of defining dispositional concepts in counterfactual terms, which is the
way many have thought they should be analyzed.

Consider truth-conditionality first, or, more exactly, the question of
whether the probabilities of counterfactuals can equal the probabilities
of their being true. The argument that the latter cannot be the case is
that at least in the case of future counterfactuals, they are equivalent (in
probability) to their corresponding indicatives, and since the indicatives
are not truth-conditional the counterfactuals cannot be either. It is true
that we should wish to reexamine the basic assumptions of our original
triviality argument of Section 1.2 as they apply to counterfactual rather
than indicative conditionals (especially the ‘structure of the space of pos-
sible probability functions’ assumption), but it would certainly be odd if
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what held for indicatives — non truth-conditionality ~ did not hold for
counterfactuals which reduce to indicatives in special cases.

The question of reducibility is more complicated. The simplest kind of
reduction is elimination by substitution of definitional equivalents, and
there is a fairly strong argument that the counterfactual cannot be
defined in terms just of factual or indicative conditional constructions.
Granted the non truth-conditionality of the counterfactual we would not
expect a definition to be a truth-conditional equivalence, but we might
hope to establish a probabilistic equivalence of the same kind as that which
defines the probability of the indicative conditional as a function of the
probabilities of its antecedent and of the conjunction of its antecedent
and consequent. Assuming that the probability of “if 4 were the case
then B would be” is correctly represented as a prior conditional probabil-
ity, po (4 => B), we would have to show that this probability could in some
way be represented as a function of the probabilities of factual or indi-
cative conditional propositions, which we have assumed to be represent-
able by posterior probabilities — i.e., to define the counterfactual in terms
of the factual and/or indicative conditional, we would have to define prior
probabilities as functions of posterior probabilities. But it is very doubt-
ful that this can be done. For, suppose that posterior probabilities arise
from prior probabilities as a result of learning ‘new evidence’, E, and
consider how the prior probability of E itself, py(E), might be defined
in terms of posterior probabilities. All posterior probabilities which might
arise from learning E would be the same as those which would have
arisen if E had been an a priori certainty (i.e., if po(E) had equaled 1), and
therefore it would not be possible to infer from posterior probabilities
alone that p,(E) had any value other than 1.

Even assuming the impossibility of definitional reduction, we might
hope to avoid the counterfactual in serious scientific .contexts by some
more complex procedure, say of ‘paraphrasing away’ in context. In fact,
it seems quite plausible that such a procedure should be possible in view
of our suggestion in Chapter I'V, Section 1 that the counterfactual plays no
essential t6le in leading reasoners such as the original speaker in our
canary example to conclusions of what are oversimply represented as
counterfactual Modus Tollens inferences. If this should be the case in
general then to the extent that science is ultimately concerned with factual
or at best indicative conditional conclusions, the counterfactual would be
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shown to be inessential. The following section, which is concerned with the
use of the counterfactual to express what could be affirmed in hypothetical
past circumstances rather than actual ones, makes this questionable how-
ever. Before turning to that, though, we conclude this section with some
comments on connections between dispositionals and counterfactuals.
Whatever ones stand is on the issue of the realism of propositions in-
volving dispositional terms, there can be no question that in ordinary
practice such propositions as “x was water-soluble at time ¢* are treated
as though they were factual for the purposes of logical and probabilistic
analysis. Furthermore, it is not hard to see that even treating dispositional
propositions as though they were factual is inconsistent with representing
them as equivalent to conditionals, counterfactual or indicative, since we
have argued in Chapter 1, Section 8 that such a representation would pre-
clude attaching any probabilities to compounds such as the conjunction
“both x and y were water-soluble at time #”*, and it is obvious that we do
attach probabilities to these compounds. What we want to suggest here is
that in fact the connection between dispositionals and counterfactuals is
more complicated than that of definitional equivalence. The relation is
closer akin to a probabilistic version of a reduction sentence, which usually
simplifies to probabilistic equivalence, but does not always do so.
Consider the connection between

S =x was water-soluble at time ¢

and the counterfactual

C =if x had been immersed in water at time ¢ it would have
dissolved.

Our strong intuitive feeling that the two propositions are equivalent is
what gives the commonly assumed definability of dispositionals in terms of
counterfactuals its plausibility, yet there are circumstances in which the
two are not equivalent. Suppose we think of the particular x in question
that it was not water-soluble at time ¢ and not immersed in water at that
time, but that if it had been water-soluble at that time it would have been
put into water to dissolve. Under the circumstances S would be almost
certainly false, but C would be quite probable (at least in one reading)
since if x had been immersed in water at the time this would have been
because it would have been soluble.
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What the foregoing suggests is equating the counterfactual C not with
the factual S, but rather with a second counterfactual which has § as its
consequent:

S = if x had been immersed in water at time ¢ then it would
have been water-soluble at that time.

This gets us around the general objection to equating conditionals with
nonconditional propositions, and can be seen on further analysis to
accord very well with the way in which dispositional properties actually
enter into probabilistic formulas. Furthermore, we have an explanation of
sorts as to why the counterfactual C is commonly thought to be equivalent
.to the dispositional proposition S. This is because ordinarily we think
immersion in water is independent of solubility (this is an instance
of the general principal that carrying out defining tests for properties
should not affect the properties tested for), and where independence can
be assumed then C and S* are equal in probability, and hence C and S
are too.

Further exploration of the connection between dispositionals and coun-
tzr.factuals is obviously required, and in particular of the implications of the
prior-posterior probability distinction, which we have ignored above in
speaking of probabilistic equivalences among C, S, and S’. This is a
matter which will be returned to briefly in Section 8, where it will be
seen to be connected with a fundamental problem for the prior probability
representation of counterfactuals. In spite of this difficulty, though, the
foregoing should make it very plausible that whatever the connection is
’t{etween counterfactuals and dispositionals, it is not one of truth-condi-
tional or probabilistic identity. The two do stand in interesting logical
relations, but the dispositional is more properly represented as factual
than as conditional in form.

7. GENERALIZING TO A HYPOTHETICAL
EPISTEMIC PAST INTERPRETATION

This and the next section discuss the need to generalize the epistemic past,
prior probability interpretation of the counterfactual, the present section
proposing a generalization which stays within the conditional probability
framework, while the following section will give reasons for doubting that
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even this generalization is sufficient to cover many important uses of the
counterfactual. We noted in Section IV.5 that one of the readings of the
counterfactual “if Jones had been at the party he would have seen Brown”
identifies this with an indicative which might have been affirmed not on
an actual prior occasion, but rather with one affirmable on a hypothetical
prior occasion in which the reasoner imagines that he learned first that
Brown was not at a party, and that then Jones did not see Brown on the
evening of the party (in fact, he learned these items of information in the
reverse order). Obviously it will be necessary to allow identification of
counterfactuals with indicatives affirmable in other than actual past
circumstances if we are to account not only for the Jones-Brown example,
but for such typical historical counterfactuals as “if Napoleon had been
kept under stricter guard on Elba he would not have escaped, and the
Battle of Waterloo would never have taken place.” It is extremely im-
plausible that anyone would ever have been in the actual position of
affirming the indicative corresponding to this counterfactual, but it is not
hard to describe hypothetical circumstances in which someone might do
so. For instance, a person might know of Napoleon only that he was
initially kept under rather loose guard on Elba, but that he might have
subsequently escaped and been involved in a battle at Waterloo. Not only
might the indicative conditional be affirmed here, but the person might
then transform it to the subjunctive and make a counterfactual Modus
Tollens inference upon being informed that Napoleon did escape and the
Battle of Waterloo really happened.

Generalizing to the hypothetical epistemic past is also consistent with
the representation of counterfactual probabilities as ‘prior” conditional
probabilities, since examination of applications of inverse probable
inference in statistics shows that what are called “prior probabilities’ in
many applications are really hypothetically prior rather than literally
prior. Consider again the urn and ball-drawing example described at the
end of IV.1. As originally described, the ‘observer’ was supposed to know
a priori (i.e., before drawing a ball out of the urn in front of him and ob-
serving its color) that the urn before him was chosen at random between
urns C and —C, and that the proportions of yellow balls in the two urns
were .99 and .20, respectively. Under the circumstances the ‘prior’ un-
conditional probabilities, po(C) and po(—C), were both .5, and were
both equal to what were the posterior probabilities of these hypotheses

A HYPOTHESIS CONCERNING COUNTERFACTUALS 127

before the ball was drawn from the urn. The same holds of the prior con-
ditional probabilities, p(— Y given C) and p(— Y given —C), entering
into the problem. However, it clearly makes no difference to the problem
that the items of a priori information were represented as having been
learned before the ‘sample’ was drawn, and even if the items had been
learned in reverse order it would still have been proper to represent
Po(C)=po(—C)=.5 as the “prior probabilities’ of these hypotheses, in
spite of the fact that in the circumstances they would not equal what had
at any actual prior time been posterior probabilities. Analogously, it
would have made no difference to the reasoning in our original canary
example if the reasoner had learned last that canaries are yellow, having
previously learned that the bird seen was not yellow but blue. Here his
affirmation of the counterfactual “if that bird were a canary it would be
yellow” a posteriori would not express what had been previously been
expressed by the corresponding indicative in actual prior circumstances,
but rather what would have been expressed with the indicative in the
hypothetical situation where he first knew the facts of canary coloration,
before he had observed the bird to be blue.

Though it maybe somewhat fanciful to describe it thus, the foregoing
suggests that hypothetical epistemic past counterfactuals are used to
‘reorder epistemic history’, and represent items of present knowledge as
having been acquired in some other order than they actually were.
Furthermore, this reordering of epistemic history may serve a purpose
in reasoning, since knowing what conclusion would have been arrived at
if presently known items had been acquired in some order other than the
actual one is also informative about conclusions which are justified given
the actual order of acquisition. Thus, suppose the reasoner in the canary
example had learned the facts of canary coloration after observing the
color of the bird (which might have actually been the case with his audi-
tor). He might have made the reordering explicit in reasoning thus:

I know that bird is blue and not yellow, and I now learn that
canaries are yellow. If I had learned the latter first, I could
have affirmed that if that bird were a canary it would be
yellow, and then I could have concluded that the bird was not
a canary upon observing that it was not yellow. Therefore,
since it makes no difference in which order I learned my facts,
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I can conclude in my present situation that the bird is not a
canary.

A number of things may be noted about the above reasoning, and in
particular about the counterfactual

IfI had learned the latter first (that canaries are yellow), ¥ could
have affirmed that if that bird were a canary it would be yellow.

which occurs in it. It is plausible to describe this as the explicit epistemic
expansion of the embedded counterfactual “if that bird were a canary it
would be yellow”, since it makes it explicit that the latter expresses what
could have been expressed with the corresponding indicative if the rea-
soner had known initially that canaries are yellow (note that the “were...
would...” of the embedded counterfactual now becomes that of indirect
discourse, which is suggestive concerning the connection between the
‘counterfactual’ subjunctive and the indirect discourse subjunctive).
Further, the expansion makes explicit in part what is inside of the scope
of the embedded counterfactual, namely the fact that canaries are yellow,
and the context makes it clear that the bird’s actual coloration is outside
of the scope. Finally, the ‘reordering of epistemic history’ use of the
counterfactual makes it questionable that the counterfactual has no
essential role to play in reasoning in which it enters. So long as its use
is merely to communicate to others reasons for arriving at conclusions
already reached, the counterfactual may be inessential (except to get others
to reach those conclusions), but it is at least possible that the counter-
factual is essential in leading reasoners to conclusions which, but for
‘hypothetical reasoning’, are only reached if information is acquired in
the ‘right’ order.

Whatever ones conclusions are about the dispensability of the counter-
factual, it is clear that the hypothetical epistemic past is a broad generali-
zation of our earlier actual epistemic past interpretation of the counter~
factual. Nonetheless this interpretation still fits the ‘prior’ conditional
probability interpretation, provided that is generalized in a way which is
consistent with actual practice in applying the theory of inverse probable
(Bayesian) inference. The following section, however, makes it extremely
implausible that even this broadened interpretation of the counterfactual
can accomodate many of its significant uses.
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8. A COUNTEREXAMPLE

Imagine the following situation. We have just entered a room and are
standing in front of a metal box with two buttons marked ‘4’ and ‘B’ and
alight, which is off at the moment, on its front panel. Concerning the light
we know the following. It may go on in one minute, and whether it does or
not Jtpiads onwhatcombinaticns of button~ 4 and © i sither, ¢ been
pushed a short while before, prior to our entering the room. If exactly one
of the two buttons has been pushed then the light will go on, but if either
both buttons or neither button has been pushed then it will stay off. We
think it highly unlikely that either button has been pushed, but if either or
both were pushed then they were pushed independently, the chances of A’s
having been pushed being 1 in a thousand, while the chances of B’s
having been pushed is a very remote 1 in a million. In the circumstances
we think there is only a very small chance of 1,000,999 in one billion
(about 1 in a thousand) that the light will go on, but a high probability
0f 999 in a thousand that if B was pushed, the light will go on.

Now suppose that to our surprise the light does go on, and consider
what we would infer in consequence. Leaving out numerical probabilities
for the moment, we would no doubt conclude that the light probably lit
because 4 was pushed and B wasn’t, and not because B was pushed and A
wasn’t. Therefore, since 4 was probably the button pushed, if B had been
Dpushed the light wouldn’t have gone on, for then both buttons would have
been pushed. The point here is that the counterfactual would be affirmed
a posteriori in spite of the tact that the corresponding indicative was very
improbable a priori, because its contrary “if B was pushed then the light
will go on” had a probability of .999 a priori.

The informal reasoning above is supported if numerical probabilities
are considered, as least so far as concerns the factual and indicative con-
ditional propositions involved. Letting ‘4’ and ‘B’ abbreviate ‘4 was
pushed” and “B was pushed”, respectively, and “L” abbreviate “the light
will (did) go on”, and representing posterior and prior probabilities
(before and after the light’s going on) by p, and p,, respectively, the in-

wverse inference formula tells us:

O) p1(B) _Po (B) " p(Lgiven B)
P1(4) po(4) " p(Lgiven 4)
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The prior unconditional probability ratio, po(B)/po(4), is directly given
as (1/1,000,000)/(1/1,000)=.001. The two inverse-prior conditional proba-
bilities can be computed as follows:

) p(L given B) = po(B = L)
= po(B= A)po(B& A= L)
+po(B=>—A)po(B& — A= L)
= po(B = A)-0 + po(B=— A)1
= po(B=—A)
= po(— A) =999,

and by parity of reasoning,
(5)  p(L given 4) = po(— B)=.999999.
Substituting these values into Equation (3) gives:

6 Pi(B) _po(B) po(=A)_.000001 ~ 99 _ 999
( P1(A) po(4) po(—B) 001 999999 999999

Note in particular that the prior conditional probability po(B = L) was
high (.999), and that it was this high prior probability which was sub-
stituted into the inverse inference formula (3) in order to compute the
correct relative posterior probabilities of B and 4.

Not only cannot the counterfactual “if B had been pushed the light
would not have gone on” be identified with the corresponding indicative
prior to the light’s going on, but it is even dubious that this counter-
factual’s probability can be assumed to satisfy the usual laws of condi-
tional probability. Symbolizing as before, but letting p be any arbitrary
conditional probability function which might represent counterfactuals’
probabilities in the present situation, we would have:

7 p(B=>—L)=p(B=>A)p(B&A=>—L)+ p(B=>—4)
xp(B& —A=—1),

and since p(B & A= — L) would obviously be 1 while p(B & — A= —L)
would be 0, we would have

p(B=>—L)=p(B=4).

The right hand counterfactual probability would be the probability that
if B had been pushed then A would also have been pushed, and this is
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most plausibly taken to be the prior probability of 4’s being pushed, .001.
On the other hand, we have already argued that p(B=- —L) equals the
posterior probability of A’s having been pushed, which is .999. If our
identification of p(B=>A) above is correct, this would imply that Equati-
on (7), which is a pure law of conditional probability, cannot hold for the
counterfactuals involved. And, if present counterfactual probabilities
do not satisfy the standard laws of conditional probabilities, it follows a
fortiori that these counterfactuals cannot even be given a hypothetical
epistemic past interpretation.

There is an important similarity between aspects of our button and
light example and certain kinds of reasoning about dispositional proposi-
tions. We can regard the pushing of button 4 as putting the electrical
circuit inside the box into a dispositional state in which the pushing of B
results in the light’s not going on, where the mere fact of the light’s actu-
ally going on can constitute evidence, positive or negative, that 4 was
pushed and the circuit was in this state. Something similar can arise in
reasoning about, say, whether a given object x (which a priori might or
might not have been dissolved at some prior time ¢) was or was not soluble
at time 7. Learning that x was not dissolved at # might under certain cir-
cumstances be evidence that x was not soluble at ¢, and that if x had been
immersed in water at that time it would not have dissolved. It is this fact
which causes difficulties not so much with relating dispositionals to con-
ditional probabilities as outlined in the last section, but with identifying
those probabilities in some systematic way with what would be posterior
probabilities in either actual or hypothetical prior states.

A rather simple minded generalization of our prior conditional proba-
bility representation which would accomodate counterfactuals entering
into the button and light example (as well as certain dispositional exam-
ples) is as follows. Restrict attention to the counterfactual ““if B had been
pushed the light would not have gone on”, whose probability is assumed
to be given by p(B=> — L). Generalizing, we may syppose there are mutu-
ally exclusive and exhaustive states S,, ..., S, which are causally inde-
pendent of B, and which together with B causally determine — L. In this
case, the probability of the counterfactual is plausibly given by:

®  pE=-0=3 nE)pEES=-L)
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In the particular case under consideration, the two causally independent
states are just 4 and — A4, and these play the role of dispositional states.

The foregoing ‘two factor model’ of counterfactual probabilities is
admittedly ad hoc, and we will only make the following brief remarks con-
cerning it. What it does is to represent counterfactuals as dependent on:
(1) particular states, S,, which may be dispositional in character, and (2)
general causal or at least nomological connections relating the antecedent
of the counterfactual together with the states S, to the counterfactual’s
consequent. Most important, whereas the counterfactual’s probability
depends on the prior probabilities associated with the causal laws, it
depends on the posterior probabilities of the states. It is the mixture of the
prior and posterior probabilities in this combination which accounts for
the counterfactual’s not satisfying the usual laws of conditional probabil-
ity, whereas the literal prior probability of the corresponding indicative
conditional is given when the posterior state probabilities are replaced by
prior probabilities, and the posterior indicative probability results when
the causal law probabilities are replaced by posterior conditional proba-
bilities. If there are no states (independent of B) which need to be con-
sidered, then the counterfactual’s probability will be a prior conditional
probability, and so the two factor model reduces to the epistemic past
model in this case.

It is an interesting sidelight on the two factor model that the require-
ment that B be causally independent of the states .S, cannot be replaced
by the requirement that these factors be statistically independent. Imagine
the button and light example modified in the following way. We suppose
that first a spinner with one million equal divisions is spun to determine
whether B is pushed (it is pushed only if a “1” comes up). Then, depend-
ing on what the upshot of the first spinning has been, one of two identical
spinners with a thousand divisions is spun to determine whether A4 is to be
pushed (4 is pushed only if “1” comes up). Here all of the probabilities
are as they were originally described, but if the spinner which is spun to
determine whether 4 is pushed depends on the outcome of the first
spinner’s spin, then 4 and B are not causally independent, and in fact we
wouldn’t affirm the same counterfactuals as in the case where they are
causally independent. Observing the light to go on, we would indeed
conclude that in all likelihood 4 was pushed and B was not, but we would
probably not affirm ““if B had been pushed the light would not have gone
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on”, since if B had been pushed a different spinner would have been used
to determine whether A4 should be pushed, and under the circumstances A
would probably not have been pushed and the light would have gone on.

The ad hoc two factor model clearly requires far more searching investi-
gation than has been considered here, but we will conclude this section by
mentioning what seems to be the chief obstacle in the further logical analy-
sis of the counterfactual. This is that, with the exception of counterfactual
Modus Tollens inference and its generalizations to confirmation-explana-
tion inferences and Reductio ad Absurdum arguments, it is very difficult
to isolate systematic inference patterns involving counterfactuals but
issuing in factual conclusions. This is the case in particular with the coun-
terfactual “if B had been pushed the light wouldn’t have gone on”, which,
though we may feel strongly that it is ‘the right thing to say’ in the
example, does not seem to be an ‘item of information’ which might con-
tribute to arriving at further factual knowledge. Lacking any factual and
indirectly practical consequences of these counterfactuals, they take on
the empty speculative character of ‘Monday morning quarterbacking’
wherein we are at a loss to say just what better and worse opinions are
because in fact nothing serious depends on them.1! The question we should
ask, then, is whether there are further inference patterns besides Counter-
factual Modus Tollens and its generalizations in which counterfactual
premises contribute (even if indirectly) to factual conclusions, the ration-
ality of which would give us a basis for assessing the counterfactuals in-
volved. This is the major open question with which we must conclude our
discussion of the counterfactual.

9. INFERENCE AS PROBABILITY CHANGE;,
COMMENTS ON WHAT CAN BE INFERRED
FROM CONTRADICTORY PREMISES

Whatever one thinks of the epistemic past hypothesis about counterfac-
tuals, our analysis of Modus Tollens in IV.1 puts that normally unques-
tioned pattern in a new light where ‘arriving at the conclusion’ is viewed
as a probability change which results when new information is acquired.
Moreover, when so interpreted the ‘inference process’ no longer appears
to be universally sound. In this and the next section we will inquire more
generally into the implications of this change of viewpoint.
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Consider two stage inference processes of the following type: A reasoner
initially accepts prior premises </ ,..., &/,, then learns a new premise %,
and arrives in consequence ata conclusion €. This section will consider two
stage processes in which the prior premises are all either factual or simple
conditional propositions, while the new information and the conclusion
are both factual. We want to know what are the circumstances in which
the conclusion € will be probable @ posteriori, and for the purpose of
determining this we will let p, and p, represent prior and posterior
probabilities, respectively; i.e., probabilities attaching to propositions
before and after the new premise is learned. Granted that the prior prem-
ises were accepted a priori, the prior probabilities po(<Z,), ..., po(Z,)
should all be high. That # is a new premise means that p, (%) should be
high, and in fact we will assume that posterior probabilities arise from
prior probabilities by conditionalizing on #: i.e., for any factual proposi-
tion %,

© p,(%) =po(% = €).

If € is the new premise 4 itself, clearly p, (%) will be 1, and so we are
assuming that the new premise is an a posteriori certainty. This is an ideal-
ization which will be reconsidered in IV.10.

The two stage process described above will be universally sound if it is
impossible for the prior probabilities po (), ..., po(#,) all to be high
while the posterior probability of the conclusion, p, (¥)=po(#Z=%) is
low. Clearly a necessary condition for this is that the corresponding one
stage process with premises <7, ..., &/, and %, and conclusion % to be uni-
versally sound in the sense of chapters I and II. However, this condition
is not sufficient, as Modus Tollens with prior premise 4 => B, new premise
—B, and conclusion —A illustrates. The necessary condition for the
universal soundness of the two stage process is that the one stage process
with premises 4 = B and — B and conclusion — A4 should be sound, which
is the case. However, the necessary and sufficient condition for the uni-
versal soundness of the two stage process is that it should be impossible
for py(A4=-B) to be high while p,(—A)= py(— B=> — 4) is low, which is
clearly not the case since this essentially is the Contraposition inference
pattern, which we know is not universally sound. Of course, this only con-
firms what we found already in IV.1; namely that two stage Modus Tollens
is not universally sound. On the other hand two stage Modus Ponens with
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prior premise 4=>B, new premise 4, and conclusion B is universally
sound, since here p,(B)= po(4 = B), so B will be as probable @ posteriori
as the prior premise was a priori (however, we will see in IV.10 that
things change when the order of premises is reversed).12

The technique just described for determining universal soundness can
be applied to two stage processes not involving conditionals at all. To
illustrate, consider the process with prior premise 4 v B, new premise
— A, and conclusion B. This process is universally sound if and only if it
is not possible for py (A4 v B) to be high while p, (B)=po(— 4= B) is low.
But we saw in Chapter 1, Section 3 that po(4 v B) can be arbitrarily close
to 1 while po(—A4=>B) is zero, hence this two stage process is not univer-
sally sound in spite of the fact that the corresponding one stage process
is sound. A counterexample to the inference of —A4=>B from Av B
described in 1.3 also transforms into a counterexample to the present two
stage process. We might now believe “either it will rain or it will snow in
Berkeley next year” and then learn from a highly reliable soothsayer “it will
not rain in Berkeley next year”, in which case it would not be rational to
conclude ““it will snow in Berkeley next year” — because it was not rational
to accept “if it doesn’t rain then it will snow in Berkeley next year.”

The last example illustrates a significant generalization. This is that if
an essential prior premise is factual (the two stage process with that pre-
mise deleted would not be universally sound), then a two stage process
cannot be universally sound unless the new premise (and conclusion) is
not really new because it in fact follows from the prior premises. This
follows from Theorem 3.7, according to which if o/ is an essential
factual premise to the inference of #=% from &/, ..., &/ , then the in-
ference can only be universally sound if the inference with the same pre-
mises and conclusion Z & ¥ is also universally sound. It begins to look
as though the conditional is the essential ‘tie which binds past and
present’ when prior knowledge and new information are combined to
arrive at new conclusions.

From the point of view of real life applications partial soundness is
probably more important than universal soundness, and we will next
make a brief remark on this very complicated subject. Assume that the
one stage process corresponding to the two stage process with prior
premises <7,,..., 4, new premise %, and conclusion % is universally
sound. Then there are two partial soundness circumstances for the two
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stage process which are significant. One is that in which the new premise
belongs to the scopes of all of the prior premises. In this case learning the
new premise will not result in having to give up any prior premise, so all
prior premises plus the new premises will be accepted a posteriori and
therefore € can be concluded in virtue of the universal soundness of the
one stage inference of € from &,,..., o, and &. Note that this explains
the universal soundness of two stage Modus Ponens, because here the
new information, 4, always belongs to the scope of the prior premise
A= B (anything entailed by the antecedent of an accepted conditional
belongs to the scope of that conditional). The second partial soundness
case is that in which the denial of the new premise was not itself accepted
a priori. This partial soundness condition reduces to the ‘belonging to
the prior scopes’ condition when prior premises are factual (because in
that case only @ priori very improbable premises can fall outside their
scopes), but can differ from the latter when prior premises are conditional,
as Modus Tollens illustrates. In the Modus Tollens case the new premise
—B always falls outside the scope of the prior premise 4=>B, since
A & —B=-B is never acceptable, and yet the inference will still be sound
so long as the contrary of the new premise was not accepted a priori.
Observe that it is where a new premise falls outside the scope of a prior
premise yet the inference is still rational that we are led to employ the
counterfactual to ‘explain’ the inference. Note too that this never happens
in the case of inferences with factual prior premises, which suggests that
nonconditional counterfactuals may have no réle to play in arriving at
factual conclusions.

Very roughly, what we have shown is that two stage processes corre-
sponding to universally sound one stage processes are sound except pos-
sibly when the new premise contradicts prior beliefs both in that: 1)
acceptance of the new premise entails giving up a prior premise, and (2)
before the new premise was learned, its contradictory was accepted. This is
of course a very limited and crude rule, but we would still argue that it
constitutes an advance over the traditional maxim “anything follows
from a contradiction” as a theory of what it is rational to believe when
confronted with conflicting data and conclusions. One thing the rule
shows is that an adequate theory of ‘conflict reasoning’ must make dis-
tinctions ignored in traditional theory, e.g., between premises accepted
at the same time and those learned ‘sequentially’ (and, possibly more im-
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portantly, between actual and hypothetical contradiction as the latter
might be considered in Reductio ad Absurdum arguments). More impor-
tantly, though, probabilistic analysis of Modus Tollens in the exceptional
‘conflict’ case shows that an adequate theory of that case cannot be given
in truth conditional terms alone, ignoring probabilities. For instance, in
the canary example in which the reasoner originally believes both “if that
bird is a canary it will be yellow” and ““if that bird is not a canary it will
be yellow” and then sees that the bird is blue, Equation (1) shows that
what it is rational to conclude depends critically not just on the fact that
the two conditionals were accepted a priori, but on how probable they
were. If the first had been much more certain than the second, for example,
it would still have been rational to conclude that the bird was not a
canary. This illustrates the general point that what is inferrable in the
face of conflict is not just a matter of what is accepted and what is not, but
rather of degrees of certainty.

Of course, the foregoing hardly does more than point out there is a
problem so far as concerns giving an adequate theory of inference in the
presence of conflict, and that it is unlikely that real progress can be made
with the problem within the frame of the orthodox truth-conditional con-
ceptual scheme. We would conjecture, though, that orthodox probabilities
cannot make much headway with the problem either, so long as those are
unable to reflect probability changes resulting from deductive discoveries
(as against changes resulting from learning new premises). Hintikka’s
paper [32] is a pioneering effort at developing a more adequate theory,
but consideration of this would carry us beyond the scope of the present
work.

10. EXTENSIONS INVOLVING
APPROXIMATE CONDITIONALIZATION

We would like to extend our theory of sequential inference processes so as
to be able to apply it to processes with new premises and conclusions of
conditional form, and also to ones of more than two stages. Unfortunately
even the simplest of these extensions - to processes with conditional
conclusions — requires us to give up the idealization that new premises
are g posteriori certainties, if a realistic theory is to be developed. To see
this, consider the process with no prior premises, new premise B, and
conclusion 4 =>B. The corresponding one stage process is the inference
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‘of A=>B from B, which is clearly not universally sound, yet if the new
premise B is assumed to be certain a posteriori, then p, (4 = B) must also
be certain, from which it would follow that the two stage process was
universally sound. Obviously we cannot continue to assume that new
premises are certain, and we will here sketch aspects of a ‘model’ of
probability change resulting from learning somewhat uncertain new pre-
mises which hopefully offers a more realistic account of the phenomena
which concern us. As it happens when uncertainties are allowed in new
premises, almost none of the processes we are interested in prove to be
universally sound, and our primary interest then turns to questions of
partial soundness. This topic is very complicated, however, and we will
content oursclves here with merely formulating the partial soundness
problem, and will defer detailed discussion to future publication.

A first approximation model of uncertain conditionalization which we
will consider is appropriately called a question- response model, according
to which, when a reasoner is represented as having learned a new premise,
4, what really happens is that he has asked the question ““is & the case?”,
and a respondent has replied that & is the case. The basic assumption of
the model is that what the reasoner has really learned as a certainty is that
the question has been asked and the response given, and that posterior
probabilities arise from prior probabilities by conditionalizing on these
certainties. Formally, if Q(%)= Q expresses the fact that “is & the case?”’
was asked and R(%)=R expresses the fact that the respondent has replied
that 48 is the case, then we assume that the posterior probability of any
factual conclusion, %, will be given by p, (€)= po(Q & R =%).13,14

Before applying the QR model to inferences, consider how our postu-
lated posterior probabilities arising by QR conditionalization (by condi-
tionalizing on Q(%) & R (%)) relate to what may be called their %-
approximations; mamely the probabilities p,(#=-%) which would be
posterior probabilities if & were the certain new premise. The following
inequality of pure probability theory provides some information:

(10)  1po(Q &R = %)~ po(Q & B = %)| < uo(Q & R = &)
+uo(Q & # = R),

where u, is the uncertainty (1 minus probability) function corresponding
to po. The left hand term, po(Q & R=>%), is of course the QR condition-
alization which we are postulating to equal p, (%), the posterior probabil-
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ity of €. Making three key assumptions, which will also be central to the
theory of inference, we can also say something about the values of the
other three terms in (10). It is plausible that merely asking the question
“is 4 the case?” is probabilistically independent of both # and %, and if
that is the case then po(Q & #=%) will equal p,(#=%), which is the
Z-approximation of the posterior probability of ¥. Assuming indepen-
dence (the independence assumption), then, the left side of (10) is the
absolute value of the difference between the postulated ‘true’ posterior
probability of % and its #-approximation.

uo(Q & R=>%) is the a priori uncertainty that, if the question is asked
and the respondent replies that & is the case, then 4 is in fact the case.
Assuming that the respondent is fruthful this uncertainty will be small, and
we will call the assumption that Q & R=>% has small uncertainty (hence
high probability) the truthfulness premise. u,(Q & %= R) is the uncertainty
that if the respondent is asked ““is % the case?” and & is the case, then
he will reply that % is the case. Assuming that the respondent is informed
and helpful this uncertainty will be low. We will call the assumption that
QO & #=>R is highly probable the informedness and helpfulness premise.
Combining the independence assumption and the truthfulness and in-
formedness and helpfulness premises it follows that the difference between
true posterior probabilities and their #-approximations must be small.15

Now return to the two stage inference process with prior premises
o 15...s &,y New premise %, and conclusion %, where we will begin by
assuming as before that both # and % are factual. If we now suppose that
not # but Q(%#) & R(F) was what was really learned as a certainty, then
the above process is appropriately called the %-approximation process.
In general, the QR elaboration of this process will be the process with the
same prior premises and conclusions as in the original process, but with
new premise Q & R instead of #. If we assume independence, truthful-
ness, and informedness and helpfulness, however, we can add these ex-
plicitly to the elaboration, and define the special QR elaboration process
as follows. The prior premises will include the formulas 7, (Q), ..., #Z,(Q)
plus the truthfulness and informedness and helpfulness premises, O & R
=% and Q & #= R, where «7,(Q) is the narrowing of <7, to Q which
results when Q is conjoined to the antecedent of ;. Assuming Q is inde-
pendent of each &7, the prior probability of ;(Q) will equal that of o7,
hence the narrowed prior premises are also affirmable a priori. The new



140 CHAPTER IV

premise of the special elaboration will now be Q & R, and the conclusion
will be the same as that of the original Z-approximation.

Now we may ask what connection there is between the soundness of
the #-approximation process and the special QR elaboration process.
So far as concerns universal soundness, the answer is simple: one process
is universally sound if and only if the other is. To prove this it is suffi-
cient to prove that the two one stage processes

Ay, A,
B=>C

and
EA (Q)"“"Mn(Q)’Q &R=>%,Q0&%=R

Q&R=¢%

are equivalent in universal soundness. The latter follows easily from
Theorem 3 of Chapter 11, assuming only that Q and R are atomic formulas
not occurring at all in the approximation process. The upshot is that so far
as concerns universal soundness, introducing the possibility of uncertainty
in new premises does not change the picture for processes with factual
premises and conclusions.

Now consider the simplest generalization, where the %-approximation
process has prior premises &L1y.00, A, new premise B, and conditional
conclusion €, =%,. As before, we can take the special QR elaboration
process to be the one with prior premises 7, (Q), ..., ,(Q)plus Q & R=
=% and Q & #=>R, new premise 0 & R, all as before, but conditional
conclusion €, =%,. If posterior probabilities are assumed to arise from
priors by conditionalizing on Q & R, then we should have:

P61 = %)= po(Q & R&Y, = %,).
It is casily seen that if the special QR elaboration process is to be uni-
versally sound, it must be the case that the inference
L(0)sr0s %, (Q), 0 & R=>B,0 & F =R
Q&R &%, =%,

is universally sound. But it follows from theorems of Chapter II that this
inference can only be universally sound if the simpler inference

Ly ey Ay B
€, =%,
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is universally sound. And, by Theorem 3.7, if & is essential to the latter
inference then it can only be universally sound if the inference with the
same premises and conjunctive conclusion %; & %, is universally sound.
In other words, the special QR elaboration process with conditional con-
clusion %, =%, can only be sound if the process with the much stronger
factual conclusion %; & %, is also universally sound (so long as the new
information is essential to the conclusion), and we have no ‘interesting’
two stage processes with conditional conclusions which are universally
sound. Of course, the foregoing should lead us to inquire into conditions
of partial soundness, but this is a complicated matter, and as with other
extensions of the basic theory, we must leave the problem for more de-
tailed discussion elsewhere.

The simplest generalization of two to many stage processes is that in
which a reasoner first accepts prior premises 7, ..., o, as before, then
learns a first new (factual) premise 4,, then learns a second new (factual)
premise B,, and then arrives at a factual conclusion %. It is clear that so
long as the new premise certainty idealization is accepted, the foregoing
three stage process will appear to be equivalent so far as concerns sound-
ness to the two stage process with prior premises &7, ..., «,, new pre-
mise the conjunction &, & %,, and conclusion €. In other words, essen-
tial generalization from two to more than two stages requires dropping
the posterior premise certainty idealization.

The natural generalization of the Q R model of uncertain new premises
is to suppose that for each new premise %,, what is really learned when a
reasoner is described as having learned 4, is that the question ““is 2, the
case?” has been asked, and a respondent has replied that A, is the case.
Symbolizing, let Q; express the proposition that “is 4, the case?” has
been asked, and let R, express the proposition that this question has been
answered in the affirmative. Then the special QR elaboration of the B,
2% -approximation process with prior premises Ay, ..., L, first and
second new premises %, and %,, respectively, and conclusion €, is ap-
propriately taken to be the process with prior premises (0 & Qy),...,
#,(Q; & Q,) (narrowing original prior premises to 0, & Q,, justified by
independence assumptions), plus 0, & R, =%, and 0; & R, =%, (truth-
fulness premises) and Q; & #,=>R, and Q, & %#,= R, (informedness
and helpfulness premises), first and second new premises Q; & R, and
Q, & R,, respectively, and conclusion €. If it is assumed that the proba-
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bility of % after the second new premise is learned is given by p,, and that

posterior probabilities arise from prior probabilities by conditionalizing

on the conjunction of Q, & R; and Q, & R,, it follows that
P2()=po(01 & R & Q, & R, = ¢).

This in turn implies that the special QR elaboration process will be
universally sound if and only if the inference

#1(Q; &Ql)s"'!'Mn(Ql & Q,),0; &R, = %,

2: &R, =>%,,0, &%, =R, 0, & %, =R,
Q01 &R &0, &R, =¥

is universally sound. Here again, however, it is easy to show that the
complicated QR elaboration above can only be universally sound if the
inference
Ay Aty By
B, =%

is universally sound. But this can only be universally sound if either B, is
an inessential premise, or in fact the inference to the stronger conclusion
%, & % is also universally sound: i.e., one of the two premises must be in-
essential.

Of course, the difficulty with three stage inferences just noted could
have been foreseen. We noted in the previous section that even assuming
posterior premise certainty, all essential prior premises of universally
sound two stage processes had to be of conditional form. In a three stage
process, all original prior premises plus the first new premise play the
r6le of prior premises in moving from the second to the third stage, which
means that if the first new premise is essential to the inference, it must
itself be of conditional form. Hence, so long as we seek universal sound-
ness but allow new premises not to be @ posteriori certainties, we must
consider new premises of conditional form. We will conclude with some
very brief comments on the very difficult problem of giving an adequate
theory of multi-stage inferences processes involving new premises which
are conditionals.

Perhaps the most interesting application of the QR model is to provide
a framework for describing the influence on beliefs of acquiring informa-
tion of non-factual forms. In particular, in the case where a reasoner is re-
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presented as having learned a conditional proposition %, =%,, we may
suppose that what has really happened is that he has asked “is &, =%,
the case?”’, and someone has replied in the affirmative. Of course, we
want to know how the effect of learning Q & R compares with or is related
to the content of the proposition %, =>%,. As with the QR elaboration of
factual new premises, we can assume that simply asking “is &, =%, the
case?” is independent of prior accepted propositions, and in particular for
any accepted prior premise .2/, its narrowing to 27,(Q) is also accepted.
Likewise, there is a kind of generalization of the truthfulness premise,
which is the assumption that Q@ & R & #, =%, is probable a priori. As-
suming that posterior probabilities arise from prior probabilities by condi-
tionalizing on Q & R, this would imply that p, (%, =%,) should be high:
i.e., #, =%, should be probable a posteriori, which is what we should
expect upon being told #, =%, by a truthful person. The problem, to
which we see no easy solution, is that there is no obvious analogue to the
informedness and helpfulness premise, and that lacking such an analogue
it is very difficult to state any universally sound rules of inference in-
volving new premises of conditional form.

Omitting any analogue to the informedness and helpfulness premise, we
might want to assume ten}atively that the appropriate special QR elabo-
ration of the process with prior premises #7,, ..., ,, new (approximate)
premise &, =%,, and (factual) conclusion % was the process with prior
premises & (Q), ..., #,(Q), plus Q & R & B, =%,, new premisc Q & R,
and conclusion . Assuming posterior probabilities arise by condition-
alizing on Q & R, this process would be universally sound if and only if
the one stage inference

,(0),...,%,(0), 0 &R & B, = B,
Q&R=>%

were universally sound. As would be expected, a necessary condition for
the universal soundness of this inference is that the inference
A yenns Ly By = By
€
should be universally sound. However, assuming that R is an atomic

formula not occurring in the approximate process, this condition will be
sufficient only when the conclusion follows from %, = %, alone.
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The foregoing result, that QR elaborations of processes with conditional
new premises are only universally sound if their conclusions follow from
the new premises alone, depends critically on the fact that we have not
included an analogue to the informedness and helpfulness premise in the
suggested QR elaboration. This is a matter deserving of further comment,
but before turning to that we may ask how well this result accords with
real life reasoning which takes place as a result of learning information
expressed in conditional form. Without undertaking a detailed survey,
we can say that we have been able to find very few two stage inference
processes with conditional new premises which are always rational in real
life. The simplest illustration is Modus Ponens with the conditional premise
learned second. Suppose a reasoner initially thinks concerning two men,
Smith and Jones, that Smith probably played and Jones certainly played
in a given game. Now he learns as a certainty that if Smith played then
Jones did not play, with the result that rather than inferring “Jones did
not play” by Modus Ponens from “Smith did play”, instead he gives up
his prior premise “Smith played.”

The foregoing is of course just one more illustration of the fact that
normally sound inference patterns can be unsound in the special case
where a new premise conflicts with an essential prior premise in such a
way that accepting the new premise entails giving up the old one. What
we seck in an adequate theory of inferences processes like our reversed
Modus Ponens process (with factual premise accepted first and condition-
al premise learned second) is therefore an account of the conditions under
which learning conditional new premises will not conflict with prior pre-
mises in the above sense. We have an account of this in the factual new
premise case, namely that the factual new premise must belong to the
scopes of the essential prior premises, and we know what is required for
membership in the scope of a proposition. The problem is to generalize
this so as to be able to say what the conditions are for a conditional
proposition to belong to the scope of a prior premise. One might argue
that generalizing the scope concept in such a way that conditionals can
belong to the scopes of propositions requires defining the probabilities
of conditionals which contain conditionals in their antecedents (because
we have defined a factual proposition to belong to the scope of a premise
if conjoining the factual to the antecedent of the premise does not make
the latter unacceptable), but we would suggest that the root of the problem
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lies in an analysis of the conditional utterance, and in particular with
getting a clearer understanding of something like informedness and help-
fulness ‘premises’ as they might apply to conditionals. Thus, though we
have been able to ignore linguistic and communicational aspects of con-
ditional propositions throughout the body of this work, it now appears
that they must be taken into account if we are to understand the effect of
learning conditionals as new premises. But this is as yet very much terra
incognita.
NOTES

1 The implicit claim here, that premises of inferences should be reasons for arriving at
conclusions, obviously takes ‘premise’ in a narrower sense than is common in logical
theory, where assumptions (such as occur in Reductio ad Absurdum arguments) are
normally called premises.

2 The Bayesian theory of probability change, an illustration of which is given at the
end of this section, is a standard part of elementary probability theory, and is usually
given in the first two or three chapters of texts such as Feller [19] or Uspensky [58].
3 This version of Bayes’ Theorem, which generalizes to arbitrary hypotheses which
may be neither mutually exclusive nor exhaustive in place of —Cand C, is particularly
useful in its neat separation of hypothesis likelihood ratios and inverse conditional
probability ratios. It is appropriate to call this case of the inverse inference formula the
Dprobabilistic Modus Tollens formula because it appears to give a probabilistic generali-
zation of Modus Tollens. We will encounter an analogous probabilistic Modus Ponens
Jformula in Section 9.

4 In fact, the present urn and ball example can be looked upon as a stochastic model of
the inference in the canary example. Analogous stochastic models can be given for
many kinds of reasoning where there is a reason to Pay attention to implicit uncertain-
ties, and they give considerable insight into the question of how these uncertainties
may affect the uncertainty of the conclusion.

5 It must be conceded that the subjunctive is rarely, if ever, used in textbook descrip-
tions of inverse conditional probabilities (which are commonly described as ‘condi-
tional probabilities’ simpliciter, or in some such form as “the probability of 4, assuming
that B”, as in Uspensky ([58], p. 61). I would hazard the following contentious conjec-
ture concerning this. This is that probability theorists either do not conceive of, or
ignore the possibility that conditional probabilities should be just as susceptible to
change ‘in the light of new evidence’ as unconditional probabilities. At any rate, this
would explain why ‘proofs’ such as those of I. J. Good [22], and Raiffa and Schiaiffer
[44] that making new observations (as against refraining from observing) is always
desirable (because it decreases expected entropic uncertainty and increases expected
utility of the results of acting) normally go unquestioned in spite of obvious counter-
examples which arise when the observer’s subjective conditional probabilities are mis-
taken in the sense of Section 111.7 (cf. an example appearing in my review [6]).

6 This may be an example of ‘inference to the best explanation’ as considered in the
writings of Harmon (e.g., [28]). My attention was first drawn to such uses of the coun-
terfactual by a nice instance in The Hound of the Baskervilles (l15], p. 684), where
Sherlock Holmes begins an explanation with the words “if that were so, and it seems
most probable,...”,
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? This ‘epistemic past tense’ reading of “‘it should have been (should be) the case that ...”
looks at least prima facie to be very close to Ryle’s analysis of the actual past tense in
Concept of Mind (chapter on Memory, see also Shwayder [48]). If, as I think there is,
there is something in Ryle’s view, this may show that the actual past is not to be
analyzed independently of the counterfactual.

8 The identification of the deontic with the practical ‘ought’ is borrowed from
Vermazen [59], to which I am indebted for most of the little I know about Deontic
Logic.

9 See, e.g., Vermazen (59), p. 17 or Nozick and Routley 431,

10 There are possible exceptions to the rule that future counterfactuals are equivalent
to their corresponding indicatives, at least if the ‘going to’ construction is regarded as
future. Knowing for certain that B isn’t going to play in such and such a game, one
might well affirm ‘if 4 were the manager then B would be going to play” but deny “if 4
is the manager then B is going to play”. On the other hand, this may be taken as one
more bit of evidence that “is going to” is logically present and not future. In any case,
I have been unable to construct any other ‘pure future’ counterexamples to the thesis
that future counterfactuals are equivalent to indicatives.

11 Perhaps a consideration of the use of counterfactuals in descriptions of fair damages
(e.g. damages equal to what an injured person would have been able to earn, if the in-
jury had not occurred) would be useful in this connection. It is interesting that this
type of counterfactual use also occurs in the rules of certain games, as in the rule pre-
scribing the penalty for obstructing a runner or batter-runner in baseball, where it is
stipulated that the runners shall advance to the bases they would have reached, in the
umpire’s judgment, if there had been no obstruction ([9], p. 23).

12 For this reason it is appropriate to regard Equation (7) as the probabilistic generali-
zation of the Modus Ponens inference rule.

13 This QR approximation theory is plausibly adaptable to the situation in which new
information is acquired by observation, where the act of asking question Q is replaced
by that of making an observation (e.g., looking to see what color some object is), and
the ‘response’ is replaced by the direct result of the observation (e.g., to learn that the
object at least seems to have such and such a color). The model becomes, perhaps,
philosophically suspect in this interpretation, because of its close connections with
dubious sense data epistemologies.

14 The present QR approximation model should be contrasted with an approximate
conditionalization model proposed by Jeffrey [34], and developed in detail by Harper
[29], according to which the posterior probability, p1(%), arising from the acquisition
of a somewhat uncertain new premise 4 is given by

apo(Z = %)+ (1 —)po( — & = %),

where a is an ‘uncertainty parameter’ close to but generally somewhat less than 1. The
Jeffrey model is inconsistent with the QR model in the sense that if « differs from O and 1
and Q and R are in the domain of definition of po, then the Jeffrey posterior probability
given above cannot always equal the QR posterior probability, po(Q & R=%) (in
particular, these probabilities cannot be equal for ¥=Q & R). The two models are
compatible in the weaker sense that, given any Jeffrey posterior probability as de-
fined by the above weighted average over a fixed class of propositions C, it is possible
to extend the domain of definition of po by adjoining new propositions @ and R to it
in such a way that the QR posterior probability will equal the Jeffrey posterior probabil-
ity for all propositions in the original domain of po. If we think of Q and R as being, in
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a sense, subjective ‘hidden variables’, which should not be part of the “public domain’
of po, perhaps the foregoing is enough to reconcile the two models.

15 Equation (8), together with the interpretations just given of its four terms, usefully
pinpoints what goes wrong in certain alleged counterexamples to the rule of probability
change by conditionalization, such as the following striking ‘paradox of three job-
seekers’ described in Gardner [20]. Three men, 4, B, and C, have applied for one job
with a priori equal chances of getting it. The management has decided who is to get the
job, but hasn’t yet announced its decision. Candidate A4 approaches the manager and
asks whether he got the job, but is told that the decision can’t be made public vet. A
then says “if you won’t tell me whether I got the job, at least tell me the name of one
person besides myself who didn’t get it.”” The manager relents to the extent of telling
A that B didn’t get the job, whereupon A feels somewhat better because he now thinks
his chances have improved (from 4 to ) for getting the job. These improved chances
are those which would follow if posterior probabilities were computed by conditional-
izing on the new premise #=— B (B didn’t get the job), yet it takes little thought to
see that in fact being told that B didn’t get the job should oz lead A to alter his prior
estimate of his chances - because he could have foretold a priori that the manager
would be able to tell him the name of someone besides himself who didn’t get the
job. The trouble here lies in the relation between the question (or demand) that the
manager should tell 4 the name of someone besides 4 who didn’t get the job, and the
manager’s response that B didn’t get the job. The analogue of the informedness and
helpfulness premise does not hold in this case, because it is not highly probable a priori
that if this question is asked and B didn’t get the job, then the manager will respond
that B didn’t get the job (if neither B nor C got the job, the manager might just as
easily have replied that C didn’t get the job). In fact, here the informedness and help-
fulness uncertainty, #0(Q & #=-R), can be as high as %, hence the proper QR posterior
probability that 4 got the job, which in this case equals the prior probability of 4, can
differ from the %-approximation (which is %) by as much as 1, even if all other un-
certainties are 0.
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